跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐君偉
研究生(外文):Chung-Wei Hsu
論文名稱:以富含相間轉移觸媒之液相催化溴化正己烷與醋酸鈉之液-固反應
論文名稱(外文):Liquid-Solid Reaction Catalyzed by the Liquid Containing Rich Phase Transfer Catalyst-Synthesis of Acetic Acid Hexyl Ester from n-Hexyl Bromide and Sodium Acetate
指導教授:翁鴻山翁鴻山引用關係蕭旭欽蕭旭欽引用關係
指導教授(外文):Hung-Shan WengHsu-Chin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:相間轉移觸媒固-液-液相間轉移催化技術乙酸己酯溴正己烷醋酸鈉
外文關鍵詞:ptcphase transfer catalysisSolid-liquid-liquid PTCHexyl acetatesodium acetatehexyl bromide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以一新穎的相間轉移催化方法,即為一富含觸媒之液相(catalyst-rich -phase),加入固體醋酸鈉和有機相反應物(溴正己烷)所形成之固-液反應系統中,成為固-液-液相間轉移催化反應系統,用以催化溴正己烷和醋酸鈉反應生成乙酸己酯。藉此方法可改善液-液與液-固相間轉移催化技術中,觸媒不易回收以及在液-液相間轉移催化技術中,羧酸根離子因水合作用降低其反應性的缺點。
本論文主要分成兩個部份:第一部份是探討固-液-液相間轉移催化系統的形成條件;第二部份是改變批式反應器中的操作條件,分析變因對有機相反應物的轉化率和主產物的選擇率的影響。且藉由回收使用觸媒液相重複批式反應來評估觸媒重複使用的可行性。
第一部份中,參考文獻的結果探討第三液相(即本實驗中的觸媒液相)的生成,且藉著改變反應系統中水的添加量,觀察對觸媒液相的體積含水量及水相的體積的影響。由實驗結果得知:當含水量較多的觸媒液相加入醋酸鈉粒子和有機溶劑所形成的固-液反應系統中,並不能形成固-液-液反應系統,這是因初期的觸媒液相內含大量的水,而固體醋酸鈉可以吸引水分子,使觸媒液相內的水重新分配,形成液(有機相)-液(觸媒相)-液(水相)-固(固體醋酸鈉)相系統。本研究為尋找解決的方法,因此改以減少系統內水量,觀察對形成觸媒液像的影響。當水分減少時,水相和觸媒液相的體積都會減少。而添加微量的水時,對觸媒液相體積的影響不大,但水相體積則減少至接近消失。此時系統中將只剩醋酸鈉固體粒子、觸媒液相和有機相,因此為固-液-液相系統。
在第二部份中,探討添加水量、醋酸鈉粒徑、溶劑種類、攪拌速率、觸媒種類、觸媒用量、溫度、固體醋酸鈉用量、添加產物鹽類溴化鈉、添加助觸媒二氧化鈦、有機中溶劑和反應物用量以及觸媒的重複使用等變因對反應的影響。由實驗結果得知:在0.015 mol的觸媒存在下,加入3 mL的水,反應物溴正己烷轉化率最高,增加或是減少水分皆會使轉化率下降。然而加入3 mL的水為三液相反應,如要形成固-液-液反應系統則須減少水量至1 mL。選用高極性的有機溶劑,雖然有助於溴正己烷的轉化率提升,但是高極性的有機溶劑會使觸媒溶入有機相中,使觸媒的回收不易,因此仍以低極性的溶劑(例如正癸烷)為宜。改變醋酸鈉固體粒徑,對溴正己烷的轉化率並無明顯的影響,因此可知醋酸鈉的溶解速率遠大於反應速率,質傳阻力是可以被忽略。攪拌速率600 rpm時,的轉化率最高,更高的攪拌速率轉化率反而下降。這是由於在低轉速下,固體粒子多懸浮在觸媒液相中,和觸媒液相的接觸面積較大,醋酸鈉和觸媒的離子交換反應較易進行;而在高轉速下則會因離心力較高,醋酸鈉固體粒子較容易被甩離觸媒液相,與觸媒液相之接觸面積變小,因此反應變慢。四級銨鹽的碳鏈越長,溴正己烷的轉化率越高,但四級銨鹽在有機相的溶解度也隨碳鏈增長而增加,使回收觸媒的困難度增加。
在溫度較高時,會產生較多的副產物,且觸媒的活性較容易衰退;溫度較低時,觸媒液相的反應性降低,因此反應溫度以80℃較適當;由Arrhenius圖求得視活化能為15.1 Kcal/mol。增加醋酸鈉固體用量至0.06 mol可使溴正己烷得到較好的轉化率,然而添加更多的醋酸鈉反而會降低轉化率,因為過多的醋酸鈉粒子分布在觸媒液相和有機相的介面區域,導致有機相的反應物質傳到觸媒液相內進行反應受到阻礙,因此反應速率下降。添加產物鹽類溴化鈉會抑制溴正己烷的反應速率,且使反應由擬一階,轉變為零階。添加TiO2雖可以小幅幫助溴正己烷的反應,但由於固體添加會抑制反應的進行,因此不添加較好。重複使用觸媒液相會使溴正己烷的轉化率下降,這是因產物鹽類的生成,使反應性變差。
This research is a novel alternate phase transfer catalysis method , that is a catalyst-rich-phase adds to the solid sodium acetate and organic reactant (hexyl bromide) which forms solid-liquid phase transfer catalysis become to solid-liquid-liquid phase transfer catalysis. Use this system to catalyze hexyl bromide and sodium acetate to hexyl acetate. This method can improve the catalyst retrieved difficult in liquid-liquid, solid-liquid phase transfer catalysis and carboxyl ion reactive reduce by hydration effect in liquid-liquid phase transfer catalysis.
This thesis is mainly divided into two parts: The first part is on the discussion of the formation of solid-liquid-liquid phase transfer catalyzed system; Second part is on the variation of operation terms in batch reactor and analysis of the influence of those terms on conversion ratio of organic reactant and yield of desire product. And reuse catalyst-rich-phase to assess the feasibility of recycle the catalysts.
The first part, use the result of reference to form the third liquid phase (namely the catalyst-rich-phase in our experiment ),and changes by adding amount of water in the system and the measurement of water content of catalyst-rich-phase and influence of the volume of water at the catalyst-rich- phase. Learnt by the experimental result: It is show that catalyst-rich-phases content more water are putting into the particle of sodium acetate and organic solvent which form solid-liquid system, can not form solid-liquid-liquid system. Because catalyst-rich-phases includes a large amount of water of initial stage, and the solid sodium acetate can attract water in catalyst- rich-phases, make water in that phase redistribute to form liquid(organic phase)-liquid(catalyst-rich-phases)-liquid(aquare pahse)-solid (solid sodium acetate )system. Our research is the change during the addition of water content and the measurement of volume change in the catalyst- rich-phases. When water content decreases, volume of the catalyst-rich- phases and aquare phase will also be decreased. While adding the small amount, have a little effect on the volume of catalyst-rich-phases, but the volume of aqueous phase decreases to near disappearance. At this moment will only have solid sodium acetate, catalyst-rich-phases and organic phase in this system, so it is solid-liquid-liquid phase system.
In the second part, studies on the amount of water added, the particle size of solid sodium acetate, type of solvent, agitation speed, catalyst kind, amount of catalyst, temperature, amount of sodium acetate, addition of the salt (sodium bromide), addition of Co-catalyst TiO2, the ratio of organic solvent and reactant, and the reusability of catalyst-rich-phase…etc. Learnt by the experimental result: adding the catalyst of 0.015 mole, hexyl bromide have the highest conversion ratio when 3 mL water was added, and increase or decrease of amount of water will make the conversion ratio to drop. But the addition of 3 mL will form tri-liquid phase system. If want to form solid- liquid-liquid system, it need to reduce water amount to 1 mL. Select high polarity organic solvent can improve the conversion ratio of hexyl bromide, but high polarity organic solvent will make the catalyst dissolve in organic phase, and make the recovery of the catalyst difficult, so we suggest to choose low polarity solvent(for example:octane). Change in the particle size of sodium acetate, does not have any influence on the conversion ratio of the hexyl bromide, indicates that the speed of dissolving of sodium acetate is far greater than the speed of reaction, it can be neglected to spread obstruction directly. When agitation speed reach of 600 rpm, conversion ratio becomes high, conversion ratio will drop instead getting higher on increasing agitation speed . This is because when the agitation speed is low, the particle of solid suspended to the catalyst-rich-phase is more, relatively more contact area with the catalyst liquid phase, the ion-exchange reactions of sodium acetate and catalyst are easier to carry on; And high agitation speed will relatively high in centrifugal force, particle of solid sodium acetate relatively easy to get rid of the catalyst-rich-phase, and diminish the area contact of the catalyst-rich- phase, and decreases reactive. Quaternary onium salts which have long chain of carbon, have high conversion ratio, but it will increase solubility in organic phase, and make difficulty to retrieve the catalyst .
When temperature is higher, there will produce more undesired reactant, and the activation of the catalyst is more easy to decline; When temperature is lower, the activation of the catalyst-rich-phase is reduced, so temperature is relatively suit 80 degrees Centigrade; The activation energe was calculation by using arrhenious plot and it found to be 15.1 kcal/mol. By addition of 0.06 mol sodium acetate gives better conversion ratio but addition of more sodium acetate will reduce the conversion ratio instead, because too many particle of sodium acetate maybe distributed in the interface area of catalyst-rich phase and the organic phase, this will cause hinderence when the organic reactant in organic phase pass to the catalyst-rich phase; Addiition of sodium bromide will suppress the conversion ratio of hexyl bromine, and the pseudo-first- order reaction will change into the zeroth order reaction. Although adding TiO2 can slightly help the reaction of hexyl bromine, but the absence of TiO2 could be better in our experiment. It is because solid can suppress the reaction. Repetition of catalyst-rich-phase will make the conversion ratio of hexyl bromide drop, because production of the sodium bromide will decrease reactive.
目錄

中文摘要---------------------------------------------------------------I
目錄------------------------------------------------------------------Ⅳ
表目錄----------------------------------------------------------------Ⅶ
圖目錄----------------------------------------------------------------Ⅷ
符號------------------------------------------------------------------ⅩⅤ
第一章 緒論------------------------------------------------------------1
1-1兩液相反應系統--------------------------------------------------1
1-2 相間轉移觸媒的種類-------------------------------------------------2
1-3 相間轉移的反應型態-------------------------------------------------6
1-3-1 兩液相反應---------------------------------------------------6
1-3-1-1 液-液相間轉移催化反應--------------------------------------6
1-3-1-2 固-液相間轉移催化反應--------------------------------------6
1-3-1-3 氣-液相間轉移催化反應--------------------------------------7
1-3-2 三相催化反應-------------------------------------------------8
1-3-2-1 液-液-固相間轉移催化反應-----------------------------------8
1-3-2-2 三液相催化技術---------------------------------------------8
1-3-2-3 固-液-液相間轉移催化技術----------------------------------10
1-4 酯化反應----------------------------------------------------------10
1-4-1 一般的酯化反應----------------------------------------------10
1-4-2 相間轉移觸媒催化酯化反應------------------------------------12
1-4-3 醋酸己酯之應用----------------------------------------------13
1-5 研究內容----------------------------------------------------------13
第二章 實驗-----------------------------------------------------------15
2-1 實驗藥品------------------------------------------------------15
2-2 實驗方法------------------------------------------------------16
2-2-1 固體醋酸鈉溶解速率------------------------------------------16
2-2-2 單批次液-液-固反應---------------------------------------17
2-2-3 重複批次固-液-液反應之操作-------------------------------17
2-3 分析方法------------------------------------------------------18
2-3-1氯離子含量之分析------------------------------------------18
2-3-2 四級銨離子濃度之分析-------------------------------------19
2-3-3 醋酸根離子濃度之分析-------------------------------------20
2-3-4 氣相層析法(G.C.)分析-----------------------------------21
2-4 校正曲線------------------------------------------------------22
2-5 有機相反應物轉化率與主產物生成分率的定義----------------------23
第三章 液-液-固催化系統的形成條---------------------------------------29
3-1 第三液相形成的變因--------------------------------------------30
3-2 液-液-固催化系統的形成----------------------------------------33
3-3 反應速率式推導------------------------------------------------34
第四章 批式固-液-液反應-----------------------------------------------40
4-1 添加富含觸媒液相的固液反應------------------------------------41
4-2 水的添加量對反應性的影響--------------------------------------43
4-3 有機溶劑種類對反應的影響--------------------------------------44
4-4 固體醋酸鈉顆粒大小對反應的影響--------------------------------45
4-5 攪拌速率對反應的影響------------------------------------------46
4-6不同的四級銨鹽對反應的影響-------------------------------------47
4-6-1不同的四級銨鹽對反應轉化率和選擇率的影響------------------48
4-6-2 不同的四級銨鹽對觸媒流失率的影響-------------------------48
4-7 觸媒添加量對反應的影響----------------------------------------49
4-8 溫度對反應的影響----------------------------------------------50
4-9 其他效應------------------------------------------------------52
4-9-1醋酸鈉固體用量對反應的影響--------------------------------52
4-9-2 添加溴化鈉對反應的影響-----------------------------------53
4-9-3 不同的有機相和正溴己烷的比例對反應的影響-----------------54
4-9-1 添加助觸媒對反應的影響-----------------------------------55
4-10重複批次式操作的影響------------------------------------------56
第五章 結論與未來研究方向---------------------------------------------80
5-1形成固-液-液系統的變因探討-------------------------------------80
5-2固-液-液催化反應變因探討---------------------------------------81
5-3 對未來研究方向建議--------------------------------------------83
參考文獻 ------------------------------------------------------------85
參考文獻

[1] Starks, C. M.; Liotta, C.; Halpern, M.; “Phase-Transfer Catalysis, Fundamentals, Applications and Industrial Perspectives ”, Chapman & Hall: New York, 1994.
[2] Menger, F. M.; J. Am. Chem. Soc., 1970, 92, 5965.
[3] Tomita, A.; Ebina. N.; Tamai, Y.; J. Am. Chem. Soc., 1977, 99, p5725.
[4] Makosza, M.; Bialecka, E.; Tetrahedron Letters, 1977, 183.
[5] Solodar, J.; Tetrahedron Letters, 1971, 287.
[6] Dehmlow, E. V.; Dehmlow, S. S., “ Phase transfer catalysis ”, Weinheim ; Deerfield Bemch, Florida; Basel, Verlag Chemin, 1983.
[7] Reuben, B.; Sjoberg, K.; Chemtech., 1981, 315.
[8] Janakiraman, B.; Sharma, M. M.; Chem. Eng. Sci., 1982, 37, 1497.
[9] Freeman, H. H.; Pure Appl. Chem., 1986, 58, 857.
[10] Kobayashi, H.; Sonada, T.; Chem. Lett., 1982, 1185.
[11] Iwamoto, H.; Tetrahedron Letters, 1983, 24(32), 4703.
[12] Starks, C. M.; J. Am. Chem. Soc., 1971, 93, 195.
[13] Starks, C. M.; Chemtech., 1980, 110.
[14] Herriott, A. W.; Picker, D., “ Phase transfer catalysis. An evaluation of catalysis ”, J. Am. Chem. Soc., 1975, 97(9), 2345.
[15] Zerda, J. D. L.; Neumann, R.; Sasson,Y.; J. Chem. Soc.:Perkin Trans.Ⅱ, 1986, 823.
[16] Frensdorff, H. K.; J. Am. Chem. Soc., 1971, 93(3), 600.
[17] Totten, G. E.; Clinton, N. A.; JMS-Rev. Macromolecules Chem. Phys., 1988, C28 (2), 293.
[18] Hennis, H. E.; Thompson L. R., Long J. P.; I & EC Prod. Res. And Dev., 1968, 7, 2, 96.
[19] Hennis, H. E.; Easterly J. P.; Collins, L. R.; Thompsom, L. R.; I & EC Prod. Res. And Dev., 1967, 6, 193.
[20] Merker, R. L.; Scott M. J.; J. Org. Chem., 1961, 26, 5180.
[21] Kimura, Y.; Regen, S. L.; J. Org. Chem., 1983, 48, 195.
[22] Gokel, G. W.; J. Org. Chem., 1983, 48, 2837.
[23] Neumann, R.; Sasson, Y.; J. Org. Chem., 1984, 49, 3448.
[24] Takaki, U.; Smid, J.; J. Am. Chem. Soc., 1974.
[25] Starks, C. M.; J. Am. Chem. Soc., 1971; 93(1), 195.
[26] Zahalka, H. A.; Sasson, Y; J. Chem. Soc. Chem. Commun.,1984, 1652
[27] Prahan, N. C.; Sharma, M. M.; Ind. Eng. Chem. Res., 1990, 29, 1103
[28] Yee, H. A.; Palmer. H. J.; Chen, S. H.;Chem. Eng. Prog., 1987, 83, 33
[29] Vander Zwan, M. C.,Hartner, F. W.;J. Org. Chem., 1978, 43, 2655
[30] Tundo, P.; J. Org. Chem., 1979, 44, 2048
[31] Tundo, P.; Venturello, P.; Synthesis., 1979, 952
[32] Tundo, P.; Moraglio, G.;Trotta F.; Ind.Eng.Chem.Res., 1989, 28,881
[33] Ford, W. T.; Tomoi, M.; Advances in Polym. Sci., 1984, 55.
[34] Hodge, P.; Sherrington, D. C.; “ Polymer-Supported reactions in organic synthesis ”, John Wiley & Sons press, 1920.
[35] Manecke, G.; Storck, W. A.; Chem. Int. Ed. Engl., 1978, 17, 657.
[36] Tundo, P.; J. Chem. Soc.: Chem. Comm., 1977, 641.
[37] Tundo, P.; J. Am. Chem. Soc., 1979, 102, 6606.
[38] Tundo, P.; Venturello, P.; Angeletti, E.; Israel J. of Chem., 1985, 26, 283.
[39] 蕭旭欽, “以三液相催化技術合成醚類化合物-第三液相形成的條件及觸媒之再使用”, 國立成功大學化工研究所博士論文, 2000
[40] Weng, H. S.; Wang, C. M.; Wang, D. H.; Ind. Eng. Chem. Res., 1997, 36, 3613.
[41] Jin, G.; Ido, T.; Goto, S.;Catalysis Today, 2003, 79-80, 471.
[42] Liotta, C. L.,Harris, H. P.; J. Am. Chem. Soc., 1974; 96, 2205.
[43] Liotta, et al.; Tetrahedron Letters, 1974, 28, 2417
[44] Yadav, G. D.; Sharma, M. M.; Ind. Eng. Chem. Proc. Des. Dev. ; 1981, 20(2), 385.
[45] Zahalka, H. A.; Sasson, Y.; Can. J. Chem., 1989, 69, 245
[46] Arrad, O.; Sasson, Y.; J. Org. Chem., 1989, 54, 4993
[47] Neumann, R.; Sasson Y.; J. Org. Chem., 1984, 49, 3448
[48] 王德和,“批式反應器內兩相與三相相轉移觸媒反應之模式及動力學研究” 國立成功大學化工研究所碩士論文, 1986
[49] 王德和, “三液相相間轉移催化反應-氫氧化鈉與鹽類對第三液相之形成及對正溴丁烷與酚化鈉反應的影響”,國立成功大學化工研究所博士論文,1995
[50] 李淑瑞,“第三液相相間轉移觸媒催化2,4,6-三溴酚之醚化反應動力學研究” 國立中興大學化工研究所碩士論文, 2003
[51] Masson, D.; Magdasi, S.; Sasson, Y.; J. Org. Chem., 1991, 56, 7229
[52] Jin, G.; Ido, T.; Goto, S.;J. Chem. Eng. Jap., 1998, 31, 741.
[53] Yadav, G. D.; Reddy, C. A.; Ind.Eng.Chem.Res., 1999, 38, 2245
[54] Ido, T. ; Yamamoto, T.; Jin, G.; Goto, S.; Chem. Eng. Sci., 1997, 52, 3511.
[55] Nouguier,R.; Mchich, M.; Tetrahedron, 1988, 44, 2477
[56] Yadav, G. D.; Jadhav, Y. B.; Langmuir, 2002, 18, 5995
[57] Fogler, H. S.; “Elements of Chemical Reaction Engineering ”, Prenitice-Hall Internation, Inc., 1994.
[58] Barry, J.; Bram, G.; Decodts, G.;Lodpy, A; Pigeon, P.; Sansoulet, J.; Tetrahedron Letters, 1982, 23, 5407.
[59] 王凱弘,“以有機產物為溶劑之相間轉移催化技術-合成丙烯基苯基醚”,國立成功大學化工研究所碩士論文,2002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top