(3.236.228.250) 您好!臺灣時間:2021/04/13 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥伯
研究生(外文):Yen-Po Lin
論文名稱:立方型孔道中孔洞材料MCM-48及中孔碳材之合成
論文名稱(外文):Syntheses of MCM-48 and Mesoporous Carbons
指導教授:林弘萍
指導教授(外文):Hong-Ping Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:100
中文關鍵詞:中孔洞材料MCM-48中孔碳材
外文關鍵詞:MCM-48Mesoporous Carbons
相關次數:
  • 被引用被引用:11
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是使用混合中性界面活性劑 (fatty alcohol polyethylene glycol ether)及陽離子型界面活性劑 (quaternary ammonium surfactant)的方法,調整出適當的疏水性有機模板來合成三維立體結構的MCM-48,並以便宜的矽酸鈉作為無機物的來源。藉由調整中性界面活性劑的莫耳比例、pH值、水量來探討MCM-48的合成條件和化學組成,以及使用不同碳鏈長的四級銨鹽和不同中性界面活性劑來合成MCM-48,並討論所形成的介尺度結構的一些物理性質(孔徑大小、孔壁厚度、單位晶格長度、表面積…等等),經由以上的研究可提供一個選擇適當界面活性劑的合成方法。並研究中性界面活性劑在此混合界面活性劑的方法中所扮演的角色,是作為共界面活性劑(cosurfactant)還是模板(template)。所合成的MCM-48,具有高表面積(~1100 m2/g)及很大的孔體積(~1 cm3/g),其粒徑大小分布約在100~300nm。經由此合成方法,我們在實驗室就能夠大量地製備MCM-48及其應用─製備中孔洞碳材。

  使用工業級酚醛樹酯做為碳的前驅物,在經過灌入、低溫聚合、高溫碳化及移除氧化矽模板後,就可得到中孔洞碳材。這種合成方法能夠依模板的結構和外觀的不同來製備擁有不同結構和外觀的中孔洞碳材,所使用氧化矽中孔洞模板有MCM-48、SBA-15、長條狀SBA-15 (Tubular-SBA-15)、蟲洞型中孔氧化矽材料(wormhole-like mesoporous silica),製備出來碳材的大小、形狀、結構都與原本的模板相似甚至是一樣。這些中孔洞碳材都具有相當高的比表面積 (>1000 m2g-1)、高孔體積(>500 cm3g-1, STP) ,以及良好的熱穩定性(~600 ℃分解)。用此合成方法能夠以低成本來大量地製備中孔洞碳材做為其它應用方面的研究(吸附劑、催化劑、觸媒的擔體、電雙層電容、儲氫材料…等等)。
  Nano-sized MCM-48 silica of 3D mesostructure was prepared by using surfactant mixtures of cationic and neutral surfactants (quaternary ammonium salt and fatty alcohol polyethylene glycol ether) as template, and cheap sodium silicate as silica source. By adjusting the neutral surfactant molar ratio, and the pH value of the solution, the phase diagrams in different water content were charted, which can help ones to find the optimum synthetic condition for mass-production of MCM-48. In addition, we employed different carbon chain length of CnTMAX and different values of n and m neutral surfactant in neutral surfactant Cn(EO)m to synthesize MCM-48, the products have different physicochemical properties (pore size, wall thickness, unit cell parameter, surface area and so on). Moreover, we found the role of neutral surfactant in this synthesis method acts as a cosurfactant. The synthesized MCM-48 has high specific surface area (~1100 m2/g) and pore volume(~1 cm3/g), its particle size distribution is around 100 nm to 300 nm. Via this convenient synthesis method, we can easily produce a large amount of nano-sized MCM-48 in laboratory for its application-as a solid template of mesoporous carbon.

  Various mesoporous carbons have been synthesized using different mesoporous silica templates. The synthesis procedure involves infiltration of the pores of the template with phenol-formaldehyde resin, carbonization, and subsequent template removal. Because the morphology and mesostructure of mesoporous carbon depends on the silica template; thus, the desired mesostructures and morphologies can be obtained by using different mesostructured silicas as solid templates. These mesoporous carbons have high specific surface area(>1000 m2g-1), narrow mesopore size distribution, large pore volumes (>500 cm3g-1, nitrogen under STP), and good thermal stability(up to 600 ℃ decomposition).By this synthesis method, we can commercialize mesoporous carbons in low cost for other potential applications (adsorbents, catalysts, catalyst supports, electrochemical double-layer capacitors, hydrogen storage materials and so on).
第一章 緒論……………………………………………………………..1
1.1孔洞材料原理介紹………………………………………………1
1.2界面活性劑的種類………………………………………………4
1.3一般中孔洞材料的形成機制……………………………………9
1.4 MCM-48的簡介…………………………………………………12
1.5 MCM-48的應用…………………………………………………17
1.5.1 MCM-48做為一固體模板…………………………………17
1.5.2 MCM-48做為擔體或直接當催化劑………………………18
1.6中孔洞碳材的簡介……………………………………………….19
1.7 MCM-48的研究動機..…………………………………………...24
1.8 中孔洞碳材的研究動機……………………………………...…27
第二章 實驗部分……………………………………………………....29
2.1化學藥品…………………………………………………………29
2.2 MCM-48的合成方法……………………………………………30
2.2.1 用不同四級銨鹽碳氫尾鏈的鏈長來合成MCM-48..………31
2.2.1.1 用C14TMABr與十二烷氧基四乙氧基醚(C12(EO)4) 來合成MCM-48………………………………………………...31
2.2.1.2用C18TMACl與十二烷氧基四乙氧基醚(C12(EO)4) 來合成MCM-48………………………………..…………………32
2.2.2 不同中性界面活性劑與溴化十六烷基三甲基銨來合成MCM-48的步驟…………………………………………….....32
2.2.3 以不同水量來合成MCM-48………………………………….33
2.3中孔洞碳材的合成方法……..…………………………………….34
2.4產物的鑑定和穩定度的測量………..………………………….…35
2.4.1 X-射線粉末繞射光譜儀(Powder X-ray Diffraction)………….35
2.4.2氮氣等溫吸附/脫附測量…………………………………….…35
2.4.2.1 六種典型氮氣吸附/脫附等溫曲線圖………..………...….36
2.4.2.2 孔徑大小分布(Pore size distribution )之計算方法…..…...37
2.4.2.3 BET表面積測量……………………………………………38
2.4.3熱重量分析 (thermogravimetric analysis)………………….…39
2.4.4元素分析 (Element analysis)…………………………………..40
2.4.5穿透式電子顯微鏡 (Transmission electron microscopy;TEM)…………………………………………………………..40
2.4.6掃描式電子顯微鏡 (Scanning electron microscopy;SEM)…42
第三章 MCM-48之合成……………………………………………….43
3.1 MCM-48的性質………………………………………………….43
3.2 MCM-48之相轉變…………………………………………...…..46
3.3 四級銨鹽碳氫尾鏈的鏈長對產物MCM-48的影響……………47
3.4不同m值的C12(EO)m中性界面活性劑對產物MCM-48的影響:………………………………..……………………………….54
3.5 水量的影響………………..…………………………………….57
3.6 MCM-48的相圖………………………………………….……59
3.6.1 不同碳鏈長的四級銨鹽界面活性劑和十二烷氧基四乙氧基醚(C12(EO)4)界面活性劑的相圖………………………….....59
3.6.1.1 C14TMABr-Pannox74 32克水………………………......60
3.6.1.2 C14TMABr-Pannox74 68克水………………………..…61
3.6.1.3 C16TMABr-Pannox74 32克水……………………..…....63
3.6.1.4 C16TMABr-Pannox74 68克水…………………….....….64
3.6.1.5 C16TMABr-Pannox74 140克水……………………..…..65
3.6.1.6 C18TMACl + Pannox74 32克水…………………………66
3.6.1.7 C18TMACl + Pannox74 68克水………………..……….66
3.6.2 不同中性界面活性劑與溴化十六烷基三甲基銨所作的相圖…………………………………………………………....68
3.6.2.1 C16TMABr -Pannox72 32克水………………………...68
3.6.2.2 C16TMABr -Pannox72 68克水………………………...69
3.6.2.3 C16TMABr -Pannox710 32克水……………………….69
3.6.2.4 C16TMABr -Pannox710 68克水………………………70
3.6.2.5 C16TMABr –Pannox1213 32克水……………….…..…71
3.6.2.6 C16TMABr –Pannox1213 68克水………………...……71
3.7中性界面活性劑所扮演的角色………………………………….73
第四章 奈米碳材之製造………………………………………………75
4.1週期性排列規則的中孔洞碳材……………………………..…..77
4.2 蟲洞中孔洞碳材………………………………………………...87
4.3 結晶狀中孔洞碳材……………………………………………...92
第五章 結論……………………………………………………………99
[1] S. Bhatia, Zeolite catalysis principles and application, CRC press, Florida, 1990.
[2] B. Imelik, Y. Naccache, J. Bentaaiit, J. C. Vedrine, G. Coudurier, H. Praliaud, Catalysis by zeolite, Elesevier, Amstordam, 1980.
[3] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Nature 1992, 359, 710.
[4] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
[5] J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
[6] D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
[7] Q. Hou, D. I. Margolese, G. D. Stucky, Chem. Mater., 1996, 8, 1147.
[8] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
[9] C. Y. Chen, S. L. Burkett, H. C. Li, M. E. David, Microporous Mater., 1993, 2, 27.
[10] A. Steel, S. W. Carr, M. W. Anderson, J. Chem. Soc. Chem. Commun. 1994, 1571.
[11] A. Firouzi, D. Kumar, L. M. Bull, T. Briser, P. Sieger, Q. Hou, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chemelka, Science 1995, 825-840.
[12] Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,
P.; Leon, R.; Petroff, P. M.; Schu¨th, F.; Stucky, G. D. Nature 1994, 368, 317.
[13] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[14] Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
[15] Ryoo, R.; Kim, J. M.; Ko, C. H.; Shin, C. H. J. Phys. Chem. 1996,
100, 17718.
[16] Stockholm and Lund, 1997, Surfactants and Polymers in Aqueous solution
[17] R. Ryoo, S. H. Joo and J. M. Kim, J. Phys. Chem. B, 1999, 103,
7435.
[18] J. M. Kim, S. K. Kim and R. Ryoo, Chem. Commun., 1998, 259.
[19] Abdelhamid Sayari, J. Am. Chem. Soc. 2000, 122, 6504.
[20] K. Schumacher, M. Gru¨ n, K.K. Unger, Microporous and Mesoporous Materials, 1999, 27, 201.
[21] F. Chen, L. Huang and Q. Li, Chem. Mater., 1997, 9, 2685.
[22] Y. Xia and R. Mokaya, J. Phys. Chem. B, 2003, 107, 6954.
[23] A. H. Schoen, NASA Technical Note D-5541. Washington, D. C. 1970.
[24] V. Alfredsson and M. W. Anderson, Chem. Mater. 1996, 8, 1141.
[25] M. Kruk, M. Jaroniec, R. Ryoo and J. M. Kim, Chem. Mater. 1999, 11, 2568.
[26] K. Schumacher, P. I. Ravikovitch, A. D. Chesne, A. V. Neimark and K. K. Unger, Langmuir, 2000, 16, 4648.
[27] M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna and O. Terasaki, J. Phys. Chem. B 2002, 106, 1256.
[28] Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743-
7746
[29] H. J. Shin, R. Ryoo, Z. Liu and O. Terasaki, J. Am. Chem. Soc. 2001, 123, 1246.
[30] C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo, G. Bellussi, Microporous and Mesoporous Materials, 1999, 27, 345.
[31] M. Fro¨ba, R. Ko¨hn, G. Bouffaud, O. Richard and G. v. Tendeloo, Chem. Mater. 1999, 11, 2858.
[32] H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu and D. Zhao Chem. Commun. 1998, 259.
[33] M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
[34] J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
[35] M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
[36] H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
[37] D. H. Park, N. Nishiyama, Y. Egashira, and K. Ueyama, Ind. Eng. Chem. Res. 2001, 40, 6105.
[38] M. S. Morey, S. O’Brien, S. Schwarz, and G. D. Stucky, Chem. Mater. 2000, 12, 898.
[39] M. S. Morey, G. D. Stucky, S. Schwarz and M. Fro1ba, J. Phys. Chem. B 1999, 103, 2037.
[40] M. Hartmann and C. Bischof, J. Phys. Chem. B, 1999, 103, 6230.
[41] J. Xu, Z. Luan, M. Hartmann and L. Kevan, Chem. Mater. 1999, 11, 2928.
[42] C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
[43] H. C. Foley, J. Microporous Mater. 1995, 4, 407.
[44] T. Kyotani, Carbon 2000, 38, 269.
[45] H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
[46] W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
[47] Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
[48] S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
[49] C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
[50] D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
[51] T. G. Lamond, H. Marsh, Carbon 1963, 1, 293.
[52] H. Marsh, B. Rand, Carbon 1971, 9, 63.
[53] R. W. Pekala, J. Non-Cryst. Solids 1992, 145, 90.
[54] H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 2000, 38, 1099.
[55] J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya,
S. Yoshida, T. Iizuka, Carbon, 1997, 35, 1031.
[56] S. Iijima, Nature, 1991, 354, 56.
[57] J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
[58] H. Gaucher, Y. Grillet, F. Beguin, S. Bonnamy, R.-J. M. Pellenq, Fundamentals of Adsorption, Vol. 6 (Ed: F. Meunier), Elsevier, Amsterdam 1998, 243.
[59] Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
[60] M. S. Morey, J. D. Bryan, S. Schwarz and G. D. Stucky, Chem. Mater. 2000, 12, 3435
[61] Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin,
I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
[62] R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677
[63] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
[64] M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
[65] Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
[66] M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B,
2000, 104, 7960.
[67] J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
[68] W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
[69] J. Lee, K. Sohn and T. Hyeon, J. Am. Chem. Soc., 2001, 123, 5146
[70] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[71] M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
[72] S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
[73] K. Schumacher, P. I. Ravikovitch, A. D. Chesne, A. V. Neimark, K. K. Unger, Langmuir, 2000, 16, 4648
[74] L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O. V. Belousov and R. Ryoo, J. Phys. Chem. B, 2002, 106, 12198.
[75] C. Yu, J. Fan, B. Tian, D. Zhao and G. D. Stucky, Adv. Mater.,
2002, 14, 1742.
[76] K. Mukhopadhyay, B. R. Sarkar, and R. V. Chaudhari, J. AM. CHEM. SOC., 2002, 124, 9692
[77] W. X. Chen, J. Y. Lee and Z. Liu, Chem. Comm., 2002, 2589.
[78] T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
[79] 賴耿陽,碳材料化學與工學,復漢出版社,2001
[80] P. Behrens, G. D. Stucky, Angew. Chem. Int. Ed. Engl., 1993, 32, 696.
[81] Jackie Y. Ying, Christian P. Mehnert und Michael S. Wong, Angew. Chem., 1999, 38, 58.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔