跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/24 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宜芳
研究生(外文):I-Fang Li
論文名稱:修飾冠狀醚之金奈米粒子對胰蛋白酶活性的影響
論文名稱(外文):The Activity of Trypsin upon Complexation with Thiolalkylated Crown Ether Modified Gold Nanoparticles
指導教授:葉晨聖
指導教授(外文):Chen-Sheng Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:金奈米粒子胰蛋白脢冠狀醚
外文關鍵詞:TrypsinGold nanoparticlescrown ether
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
  將衍生硫醇基的有機環分子修飾於金奈米粒子上,其有機環分子為兩種冠狀醚,分別為2-(10-硫醇基葵烷氧基)甲基-12-冠狀醚-4和2-(10-硫醇基葵烷氧基)甲基-18-冠狀醚-6,利用電子穿透式顯微鏡(TEM)觀察其修飾冠狀醚的金奈米粒子的互相作用關係。我們發現修飾不同孔洞的冠狀醚於金奈米粒子上,加入磷酸鹽類緩衝液中,其聚集的方式會有所不同,修飾18-冠狀醚-6的金,以最密推積的方式聚集形成二維六角形,而修飾12-冠狀醚-4的金,則是比較偏向三維的雜亂排列。接著,測試金奈米粒子 / 冠狀醚對蛋白脢的影響,固定的酵素濃度均為10μM,分別混合10nM、5nM、1nM等不同濃度的金奈米粒子 / 冠狀醚濃度,並與純胰蛋白酶的酵素活性比較。我們發現在加入濃度為1nM的金奈米粒子 / 冠狀醚的酵素催化之初始速率降低了40%,而當加大金奈米粒子 / 冠狀醚的濃度為10 nM時,初始速率卻與純的胰蛋白酶幾乎相同。
  Two crown ether, 2-[(10-Mercaptodecyl)oxy]methyl-18-crown-6 (18-Crown-6) and 2-[(10-Mercaptodecyl)oxy]methyl-12-crown-4 (12-Crown-4), functionalized gold nanoparticles have been characterized both in its TEM micrograph and its effect on trypsin trytic activity. In TEM micrographic studies, Au/18-crown-6 conjugates organized into a uniform 2D monolayer with close hexagonal packing, while Au/12-crown-4 exhibited both 2D and 3D assembles, in the potassium phosphate buffer (10 mM, pH 8). The trypsin tryptic activity was studied as a function of Au/Crown concentrations (1 nM, 5 nM, 10 nM). It was found that the initial rate in the 1 nM of Au/Crown showed about 40% decrease compared with pure enzyme; however, with the increase of Au/Crown concentration, the activity increased.
中文摘要
英文摘要
目錄.................................................Ⅰ
表目錄...............................................Ⅳ
圖目錄...............................................Ⅴ

第一章 序論
1.1 奈米材料的介紹................................1
1.2 奈米粒子的性質及種類..........................4
1.2.1 奈米的結構....................................4
1.2.2 表面效應......................................5
1.2.3 結構效應......................................6
1.2.4 量子化效應....................................8
1.2.5 表面電漿共振效應.............................10
1.2.6 膠體粒子之特性...............................13
1.3 奈米粒子的製備方法...........................17
1.4 奈米粒子之表面修飾...........................20
1.4.1 單層自組合薄膜(Self Assembly Monolayers).....20
1.4.2 多層自組裝(Layer by Layer)...................21
1.4.3 巨分子修飾...................................22
1.5 金奈米粒子(Gold nanoparticles)簡介...........24
1.5.1 粒徑 SPR 吸收值及生成方式....................24
1.5.2 製備方法.....................................24
1.5.3 粒徑偵測.....................................26
1.6 胰蛋白酶 (Trypsin) 之功能介紹................30
1.6.1 胰蛋白酶之結構...............................30
1.6.2 胰蛋白酶之酵素活性...........................31
1.7 冠狀醚(Crown ether)之功能介紹................32
1.7.1 冠狀醚的特性.................................33
1.7.2 冠狀醚之常見應用.............................34

第二章 實驗......................................35
2.1 研究動機與目的...............................35
2.2 材料.........................................37
2.3 儀器設備.....................................38
2.4 實驗步驟.....................................40
2.4.1 製備金奈米粒子 (Au nanoparticles)............40
2.4.2 合成冠狀醚衍生物 (Crown thiols)..............41
2.4.3 金奈米粒子表面修飾冠狀醚 (Au/Crown)..........45
2.4.4 量測酵素活性.................................47

第三章 結果與討論................................51
3.1 金奈米粒子......................................51
3.2 金奈米粒子 / 冠狀醚 之特性......................53
3.3 金奈米粒子 / 冠狀醚 / 胰蛋白酶 之特性...........56
3.4 金奈米粒子 / 冠狀醚 / 胰蛋白酶 之酵素活性分析...58
3.6 結論............................................62

參考文獻.............................................80
1. 引邦耀, “nanotechnology奈米世界”, 五南圖書出版社, 2002.

2. 馬遠榮, “奈米科技”, 商州出版.

3. 理查.費曼(Richard P. Feynman), “費曼的主張”, 天下遠見, 2001.

4. Faraday, M. Philo. Trans.R. Soc.1875, 147, 145.

5. Iijima, S. Nature. 1991, 354, 56.

6. Chung, S. H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S. G.; Scrosati, B.; Plichta, E., J. Power Sources.2001, 97, 644.

7. Oh, S.T.; Sando, M.; Sekino, T.; Niihare, K. Nanostruct. Mater. 1998, 10, 267.

8. (a) Lisiecki, I.; Kongehl, H.S.; Wessi, K.; Urban, J.; Pileni, M. P. Langmuir, 2000, 16, 8802.
 (b) Lisiecki, I..; Kongehl, H.S.; Wessi, K., Urban, J., and Pileni, M. P. Langmuir, 2000, 16, 8807.

9. (a) Cariati, F.; Naldini, L. Inorg. Chim. Acta. 1971, 5, 172.
 (b) Bartleet, P. A.; Bauer, B. A.; Singer, S. I. J. Am. Chem. Soc. 1978, 100, 5085.
 (c) Woehrle, C. S.; Merritt, M. V.; Whitesides, G. M. J. Phys. Chem. B 2002, 106, 9979.
 (d) Schmid, G.,; Pfeil, R.; Boese, R.; Sandermann, F.; Meyer, S.; Calis, G. H. M.; van der Welden, J. W. A. Chem. Ber. 1981, 114, 3634.
 (e) Weare, W. W.; Reed, S. M.; Warner, M. G..; Hutchison, J. E. J. Am. Chem. Soc. 2000, 122, 12890.
 (f) Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. and Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
 (g) Schaaff, T. G..; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Wing C.; Ascensio, J.; Yacaman, M. J. J. Phys. Chem. B 1997, 101, 7885.
 (h) Leff, D. V.; Brant, L.; Heath, J. R. Langmuir 1996, 12, 4723.
 (i) Yee, C. K.; Jordan, R.; Ulman, A.; White, H.; King, A.; Rafailovich, M.; Sokolov, J. Langmuir 1999, 15, 3486.
 (j) Shon, Y. S.; Gross, S. M.; Dawson, B.; Porter, M.; Murray, R. W. Langmuir 2000, 16, 6555.
 (k) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735.

10. (a) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
 (b) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B. 2001, 105, 4065
 (c) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir, 2003, 19, 9065.
 (d) Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B. 2000,104, 8635.

11. (a) Ji, C.; Searson, P. C. J. Phys. Chem. B. 2003, 107, 4494.
 (b) Djalali, R.; Li, S.-Y.; Schmidt, M. Macromolecules 2002, 35, 4282.

12. Ekinci, K. L.; Valles, J. M. Jr. PHYSICAL REVIEW B 1998, 58, 7347.

13. 王崇人, “科學發展月刊”, 2002, 345, 48

14. El-sayed, M.A.; Wang, Z. L.; J. Phys. Chem. B, 1998, 102, 6145.

15. 莊萬發 超微粒子理論與應用 復漢出版社 1994.

16. (a) Garcý´a-Gonza´ lez, E.; Arribas, M.; Gonza´ lez-Calbet, J. M. Chem. Mater. 2001, 13, 96.
 (b) Kno1zinger, E.; Babka, E.; Hallamasek, D. J. Phys. Chem. A 2001, 105, 8176.

17. Weisbuch, C.; Benisty, H.; Houdré,J. R. Lumin.2000, 85, 271.

18. Borhren, C.F.; Huffman, D. R. “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience, 1998.

19. Grabar, C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735.

20. (a) Mulvancy, P.; Langmuir, 1996, 12, 788.
(b)Templeton, A. C.; Pitron, J. J.; Murry, R. W.; Mulvancy, P. J. Phys. Chem. B 2000, 104, 564.

21. 張有義, 郭蘭生編譯, “膠體與介面化學入門”, 高立圖書有限公司, 1997.

22. Hunter, R. J. “Introduction to Modern Colloid Science”, 1993.

23. Good, R. J.; Stromberg, R. R. “Surface and Colloid Science Vol. 11”, published by Plenum Press, New York and London.

24 http://www.dwi.rwth-aachen.de/ lb/88.html

25. van Loosdrecht, M. C. M.; Lyklema, J.; Norde, W.; Zehnder A. J. B. Microb. Ecol. 1989, 17, 1.

26. Schimid, G.. “Cluster and Colloid ;Form Theory to Application”, VCH:New York, 1994.

27. Grabar, K.C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 55.

28. Henglein, A.; Meisei, D Langmuir 1998, 14, 7392.

29. Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamoto, T. A.; Oshima, R.; Nagata, Y. J. Phys. Chem. B 1997, 101, 7033.

30. Reetz, M. T., Helbig, W. J Am. Chem. Soc. 1994, 116, 7401.

31. Li, X.; Niu, J.; Zhang, J.; Li, H.; Liu, Z. J. Phys. Chem. B. 2003; 107, 2453.

32. Mikhaylova, M.; Kim, D. K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Langmuir 2004, 20, 2472.

33. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B. 2003, 107, 2719.

34. Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Langmuir 2001, 17, 6375.

35. Bradley J. S. “The Chemistry of Transition Metal Colloids, In Clusters and Colloid”, Schmid G., Ed.; VCH pulishers ; New York, NY(USA), 1994, p.459-537.

36. Han, L.; Daniel, D. R.; Maye, M. M.; Zhong, C.-J. Anal. Chem. 2001, 73, 4441.

37. Bol, A. A.; Meijerink, A. J. Phys. Chem. B. 2001; 105, 10203.

38. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc. 2001, 123, 12798.

39. http://www.ifm.liu.seapplphys/biomaterial/research/sam.html

40. Brust M.; Walker M., Bethell D., Schiffrin D. J. and Whyman R. J. Chem. Soc. Common. 1994, 801.

41. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959-1964.

42.Kumar A.; Biebuyck H. A.; Whitesides, G.. M. Langmuir 1994, 10, 1498.

43. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109.

44. http://www.chemtech.com.tw/Column.php?item=7&div=Show

45. Keating, C. D.; Kovaleski, K. M.; Natan, M. J. J. Phys. Chem. B. 1998, 102, 9404-9413.

46. Soukka, T.; Harma, H.; Paukkunen, J.; Lovgren, T. Anal. Chem. 2001, 73, 3511.

47. Zhang, C.; Zhang, Z.; Yu, B.; Shi, J.; Zhang, X. Anal. Chem. 2002, 74, 96.

48. Feldheim D. L.; Foss. C. A. Jr. Ed. Metal nanotarticles : Synthesis, Phys. Rev. Lett. 1991, 66, 3052.

49. Baraton, M. I. “Symthesis, Functionalization and Surface Treatment of Nanoparticles”, American Scientific Publishers, Califarnia. 2003.

50. 汪建民, 材料分析, “中國材料科學學會”, 1998.

51. Maxwell-Garnett, J. C. Philos. Trans. R. Soc. A 1904, 203, 385.

52. Chang, S. L., “Multiple Diffraction of X-ray in Crystals”, Springer-Verlag, 1984.

53. Feidenhans’l, R. Surf. Sci. Rep. 1988, 10, 105.

54.李信義, 楊淑雯, 李志浩, “核子科學”, 1993, 30, 417.

55. Bao, P.; Frutos, A. G.; Greef, C.; Lahiri, J.; Muller, U.; Peterson, T. C.; Warden, L.; Xie, X. Anal. Chem. 2002, 74, 1792.

56.陳國誠, “微生物酵素工程學”

57. Grünberg, R.; Domgall, I.; Günther, R.; Rall, K.; Hofmann, H. J.; Bordusa, F. Eur J Biochem 2000 267: 7024.

58. Helland; Leiros, I.; Berglund, G. I.; Willassen, N. P.; Smalas A. O. Eur J Biochem 1998, 256, 317.

59. Marquart, M.; Walter, J.; Deisenhofer, J.; Bode, W.; Huber, R. Acta Crystallogr., Sect.B 1983, 39, 480.

60. Schmidt, A.; Jelsch, C.; Østergaard, P.; Rypniewski, W.; Lamzin, V. S. J. Biol. Chem. 2003 278, 43357.

61. Steed, J. W.; Atwood, J. L. “SUPRAMOLECULAR CHEMISTRY”, 2000.

62. Cram, D. J. Angew. Chem. Int. Ed. Engl., 1988, 27, 1009.

63. Lehn, J. M. Angew. Chem. Int. Ed. Engl., 1988, 27, 89

64. Pedersen, C. J. Angew. Chem. Int. Ed. Engl., 1988, 27, 1021

65. Miura, Y.; Kimura, S.; Imanishi, Y.; Umemura, J. Langmuir, 1998, 14, 2761.

66. Lin, S. Y.; Liu, S. W.; Lin, C. M.; Chen, C. h. Anal. Chem. 2002, 74, 330.

67. Yuan, Y.; Shao, Y. J. Phys. Chem. B. 2002, 106, 7809.

68. Jung, J. H.; Ono, Y.; Sakurai, K.; Sano, M.; Shinkai, S. J. Am. Chem. Soc.2000, 122, 8648.

69. Griebenow, K.; Vidal, M.; Baez, C.; Santos, A. M.; Barletta, G. J. Am. Chem. Soc. 2001, 123, 5380.

70. Zhang, Z.; Saengkerdsub, S.; Dai, S. Chem. Mater. 2003, 15, 2921.

71 (a)Griebenow, K.; Laureano, Y. D.; Santos, A. M.; Clemente, I. M.; Rodriguez, L.; Vidal, M. W.; Barletta, G.. J. Am. Chem. Soc. 1999, 121, 8157. 
 (b) van Unen, D. J.; Engbersen, J. F. F.; Reinhoudt, D. N. Biotechnol. Bioeng. 1998, 59, 553.
 (c) van Unen, D. J.; Engbersen, J. F. F.; Reinhoudt, D. N. Biotechnol. Bioeng. 2002, 77, 248.

72. Grabar, K. C.; Freeman, R. G..; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735.

73. Flink, S.; Boukamp, B. A.; van den Berg, A.; Reinhoudt, D. N.; van Veggel, F. C. J. M. J. Am. Chem. Soc. 1998, 120, 4652.

74. Zhao, B.; Li, H.; Zhang, X.; Shen, J.; Ozaki, Y. J. Phys. Chem. B. 1998, 102, 6515.

75. Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem. Soc. 2003, 125, 1643.

76. Terrill, R. H.; Postlethwaite, T. A.; Chen, C. h.; Poon, C. D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G. J. Am. Chem. Soc. 1995, 117, 12537.

77. Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1999, 121, 882.

78. (A)Keating, C. D.; Kovaleski, K. M.; Natan, M. J. J. Phys. Chem. B. 1998, 102, 9404.
 (B) Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S. R.; Mandale, A. B.; Rao, M.; Sastry, M. Langmuir 2001, 17, 1674.
 (C) Mukhopadhyay, K.; Phadtare, S.; Vinod, V. P.; Kumar, A.; Rao, M.; Chaudhari, R. V.; Sastry, M. Langmuir 2003, 19, 3858.
 (D) Huang, Y. F.; Huang, C. C.; Chang, H. T. Langmuir 2003, 19, 7498.

79. Fischer, N. O.; Verma, A.; Goodman, C. M.; Simard, J. M.; Rotello, V. M. J. Am. Chem. Soc. 2003; 125, 13387.

80. Hong, R.; Fischer, N. O.; Verma, A.; Goodman, C. M.; Emrick, T.; Rotello, V. M. J. Am. Chem. Soc. 2004, 126, 739.

81. Dagade, D.; Pawar, R.; Patil, K. J. Chem. Eng. Data 2004, 49, 34.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top