跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/26 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張興漢
研究生(外文):Hsing-Han Chang
論文名稱:波浪與近岸潛沒透水結構物之交互作用
論文名稱(外文):Interaction of Water Waves and Submerged Permeable Offshore Structures
指導教授:黃煌煇黃煌煇引用關係黃清哲黃清哲引用關係
指導教授(外文):Hwung-Hweng HwungChing-Jer Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:200
中文關鍵詞:透水砂漣透水潛堤透水底床
外文關鍵詞:submerged porous breakwaterporous bedrippled porous bed
相關次數:
  • 被引用被引用:5
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本文旨利用數值方法模擬造波水槽之波浪運動,以探討微小振幅波、Stokes 高階波以及孤立波,與透水結構物(透水底床、透水矩形潛堤及透水人工砂漣底床)互制時,液面的變化及內部流場的運動特性。文中不同於傳統波浪力學所採用的方法,係透水結構物外部流體使用黏性流體運動方程式,即:Navier-Stokes 方程式,而內部孔隙流體運動方程式則利用Solitt and Cross (1972)所推得之方程式中加入流體之對流慣性力項及黏滯力項,使其微分方程型式與Navier-Stokes方程式類似,並輔以非線性的自由液面邊界條件,以期完整呈現波浪場中非線性與黏性效應的影響。
本文所求解的變數為流場的原始變量 ,為能快速且穩定的求得這些變量,並且避免涉及波動的壓力場問題,模式本身則以有限解析法(FA)離散控制方程式,並配合交錯格網及SIMPLER演算法,以建立高效率及高精度的數值模式。而格網的選用上,於求解較規則的物理域時(透水底床或透水矩形潛堤的問題)採用矩形格網處理之,但在較複雜的物理域求解上(如:透水人工砂漣底床),此種格網已不敷使用,故此部分本文則使用貼壁格網為之。
至於數值造波的模擬方面,本文結合造波理論與Lagrange移動格網的數值技巧,目前已能準確的模擬微小振幅波、Stokes 高階波以及孤立波,而其波形及流場與解析解相當吻合。在週期波與透水潛堤的交互作用研究上,快速傅利葉轉換與高頻波分離的技巧,則被用於解析波浪與潛堤交互作用過程中水位的非線性現象,至於各無因次參數( 數、孔隙率 及潛堤的幾何因子)與波浪及潛堤互制過程中所衍生之液面非線性與渦流的關係,亦進行一系列的研究。而孤立波與透水潛堤的互制研究上,本文則著重於前人較少觸及的波形變化、反射、透射係數及潛堤受力上,其結果顯示當孤立波通過潛堤的瞬間,會對潛堤產生一相當大的波傳方向作用力,隨著孤立波通過潛堤後,此作用力會逐漸變小,且作用力方向發生與先前反向的情形。
對於在波浪與透水人工砂漣底床的互制研究上,數值所得波形變化與解析所得的結果在定性上的比較相當吻合。砂漣附近流場的一週期平均流速(Streaming velocity)也有深入的探討,根據分析的結果顯示不透水之情況下,在兩漣峰間會形成一大型渦對,當砂漣為可透水時,此渦對的不對稱性越趨明顯。為更瞭解砂漣附近輸砂的機制,砂漣附近水粒子的運動軌跡也進行分析,即當孤立波通過砂漣底床時,數值結果顯示砂漣附近的渦流會衍生一與波浪傳遞方向相反的流(current),這與波浪傳遞方向相反的流,對砂漣底床沉滓的傳輸可能扮演重要的角色。
The unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flows were solved numerically to simulate the propagation of water waves over a permeable bed, a submerged porous breakwater, and a rippled porous bed. The Navier-Stokes type model equations for the flow inside the porous structure are complete, containing the convective inertial force term and the viscous force term, both terms are often ignored in the previous literature. The free surface boundary conditions and the interfacial boundary conditions between the water and the porous media are in complete form. A piston-type wavemaker was set-up in the computational domain to generate the incident waves, including the small- and finite- amplitude waves as well as the solitary waves.
To demonstrate the proposed model equations are suitable for investigating the interaction of waves and porous offshore structure, first of all, the proposed model equations are solved numerically to simulate the propagation of water waves over a porous bed. The numerical results for the free surface elevation, the velocity profile near the interface, and the pore pressure in the porous bed are in good agreement with available experimental data and analytical solutions. After having verified the accuracy of the numerical scheme, effects of different parameters on the propagation of periodic waves and solitary waves over a porous bed are investigated. Our numerical results showed that the effective thickness of the boundary layer above the porous bed depends on the porosity and permeability. In the investigated cases, the thickness can reach as high as 50 , while the corresponding value for impermeable bed is 10 . For porous bed with large porosity and permeability, the effective thickness of Brinkman’s viscous layer depends not only on the porosity and permeability, but also on the wave phase due to the effect of the inertial force from the upper water region. In the investigated cases, the effective thickness varies between 0 and 20 .
The propagation of periodic waves over a rectangular permeable breakwater was then studied. The numerical results of the wave profiles recorded at several stations near the breakwater were compared with the experimental results to verify the accuracy of the numerical scheme. Spatial evolution of higher harmonics as waves propagate over a breakwater was determined. The transformation of waves near the breakwater was discussed in terms of the beat length of the higher harmonics and the energy transfer between the bound waves and free waves. The variation of the reflection and transmission coefficient with respect to the width of the breakwater was also determined. The flow fields near the breakwater are discussed in terms of the velocity vectors, the circulation, and the trajectories of the fluid particles. The pressure drag acting on the breakwater was also calculated. The propagation of a solitary wave over a porous breakwater was also investigated. Our numerical results reveal that if the breakwater width is small compared with the effective wavelength, the structure permeability has no apparent effect on wave transformation. For wide porous breakwaters, if the structure porosity is small, the increase in the porosity results in the reduction of the transmission coefficient; otherwise the transmission coefficient increases with porosity.
A numerical scheme was also developed to solve the Navier-Stokes model equations and the exact free surface and interface boundary conditions to study the propagation of water waves over artificial rippled porous beds. A boundary-fitted coordinate system was used in this model. The accuracy of the numerical scheme was verified by comparing the numerical results for the spatial distribution of wave amplitudes on the impermeable and permeable rippled bed at resonant conditions with the analytical solutions. For the periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. To provide information for understanding the possible mechanism of sediment transport around the rippled bed, trajectories of the fluid particles with initial locations close to the ripples were determined. One of our main results showed that under the action of periodic water waves, fluid particles on the impermeable rippled bed move at first back and forth around the ripple crest with increasing vertical distance from the ripple wall. After one or two wave periods they are then lifted up and shifted towards the next ripple crest. When the rippled bed is permeable, the size of the vortices generated at both the weather and lee sides of the porous ripples are smaller, because the flow is allowed to penetrate into or through the porous bed. All of the marked particles on the rippled porous bed shift onshore with much larger displacement than that in the impermeable case. The back and forth movement does not dominate the motion of the particles, except at the weather side of the ripple crest. The particles move rather straightforward in the wave direction.
Contents

Chinese Abstract I
Abstract III
Contents VI
Figure Caption IX
Table Caption XVI
Notation XVII

Chapter 1 Introduction 1
1.1 Background 1
1.2 Propagation of Water Waves over a Rigid Porous Bed 2
1.3 Propagation of Water Waves over a Submerged Porous Breakwater
6
1.4 Propagation of Water Waves over a Rippled Porous Bed 10
1.5 Outline of Presentation 14

Chapter 2 Historical Background of the Governing
Equations for the Flows in the Porous Media 18
2.1 Steady Pore Flow 18
2.2 Unsteady Pore Flow 22
2.3 Recent Development 24
2.4 Adapted Governing Equations 26


Chapter 3 Governing Equations and Boundary Conditions 28
3.1 Cartesian Coordinate System 28
3.1.1 Free surface boundary conditions 30
3.1.2 The upstream boundary condition 32
3.1.3 The downstream boundary condition 33
3.1.4 The interfacial boundary condition 34
3.2 Curvilinear Coordinate System 34

Chapter 4 Numerical Methods 38
4.1 The Staggered Grid System 38
4.2 Finite-Analytic Method 38
4.3 Solution Algorithm 43
4.4 Treatment of the Free Surface Boundary 48
4.5 Treatment of the Interfacial Boundary 51
4.6 The Solution Procedure 54

Chapter 5 Propagation of Water Waves over a Porous Bed 55
5.1 Propagation of Periodic Waves over a Porous Bed 55
5.1.1 Verification of the numerical model 56
5.1.2 Propagation of periodic waves over a porous bed 61
5.2 Propagation of a Solitary Waves over a Porous Bed 76
5.2.1 Verification of the numerical model 76
5.2.2 Flows induced by the propagation of a solitary wave over a
porous bed 82
5.2.3 Effects of parameters on the wave attenuation and the pore
pressure 84
5.3 Conclusions 90

Chapter 6 Propagation of Periodic Waves over a Submerged
Porous Breakwater 93
6.1 Verification of the Numerical Scheme 94
6.2 Wave Transformation, Reflection and Transmission 98
6.3 Flow Fields and Vorticity 115
6.4 Wave Drag and Trajectories of Fluid Particles near the
Breakwater 121
6.5 Conclusions 130

Chapter 7 On the Interaction of a Solitary Wave and a Submerged
Porous Breakwater 132
7.1 Effects of the Structure Permeability on the Wave
Transformation, Refection and transmission 133
7.2 Flow Fields and Vortex Shedding 140
7.3 Trajectories of the Fluid Particles near the Breakwater 149
7.4 Wave Forces 152
7.5 Conclusions 153

Chapter 8 Propagation of Water Waves over a Rippled Porous Bed 156
8.1 Verification of the Numerical Scheme 157
8.2 Propagation of Regular Waves over Rippled Porous Bed 160
8.3 Propagation of a Solitary Wave over Permeable Rippled Bed 171
8.4 Conclusions 176

Chapter 9 Conclusions 179
9.1 Conclusions 179
9.2 Recommendations for Future Research 184

References 185
Acknowledgements 195
Author Information 197
References

1.Arbhabhiramar, A.M. and A.A. Dinoy, 1973. Friction factor and Reynolds number in porous media flow. J. Hydraulics Div., Vol. 99, pp. 901-911.
2.Beji, S. and J.A. Battjes, 1993. Experimental investigation of the wave propagation over a bar. Coastal Eng., Vol. 19, pp. 151-162.
3.Beji, S. and J.A. Battjes, 1994. Numerical simulation of nonlinear wave propagation over a bar. Coastal Eng., Vol. 23, pp. 1-16.
4.Blondeaux, P., 1990. Sand ripples under sea waves, Part 1. Ripple formation. J. Fluid Mech., Vol. 218, pp. 1-17.
5.Blondeaux, P. and G. Vittori, 1991. Vorticity dynamics in an oscillatory flow over a rippled bed. J. Fluid Mech., Vol. 226, pp. 257-289.
6.Blondeaux, P. and G. Vittori, 1999. Boundary layer and sediment dynamics under sea waves. in: Liu, P.L.F. (Ed.). Advances in Coastal and Ocean Engineering, Vol. 4, World Scientific, pp. 133-190.
7.Blondeaux, P., E. Foti, and G. Vittori, 2000. Migrating sea ripples. Eur. J. Mech. B-Fluids, Vol. 19, pp. 285-301.
8.Brinkman, H.C., 1947. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1, pp. 27-34.
9.Carman, P.C., 1937. Fluid flow through granular beds. Transactions, Institution of Chemical Engineers, Vol. 15, pp. 150-166.
10.Chan, R.K.C. and R.L. Street, 1970. A computer study of finite-amplitude water waves. J. Comput. Phys., Vol. 6(1), pp. 68-94.
11.Chang, K.A., T.J. Hsu, and P.L.-F. Liu, 2001. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves. Coastal Eng., Vol. 44, pp. 13-36.
12.Chen, C.J. and H.C. Chen, 1982. “The finite-analytic method,” IIHR Report 232-IV, Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City.
13.Chen, H.C. and V.C. Patel, 1987. Laminar flow at the trailing edge of a flat plate. AIAA J., Vol. 25(7), pp. 920-928.
14.Chwang, A.T. and A.T. Chan, 1998. Interaction between porous media and wave motion. Ann. Rev. Fluid Mech., Vol. 30, pp. 53-84.
15.Cruz, E.C., M. Isobe, and A. Watanabe, 1997. Boussinesq equations for wave transformation on porous beds. Coastal Eng., Vol. 30, pp. 125-156.
16.Dagan,G., 1979. The generalization of Darcy’s law for nonuniform Flows. Water Resour. Res., Vol. 15, pp. 1-7.
17.Dalrymple, R.A., M.A. Losada, and P.A. Martin, 1991. Reflection and transmission from porous structure under oblique wave attack. J. Fluid Mech., Vol. 224, pp. 625-644.
18.Darcy, H.P.G., 1856. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris.
19.Davies, A.G. and A.D. Heathershaw, 1984. Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech., Vol. 144, pp. 419-443.
20.Davies, A.G. and C. Villaret, 1999. Eulerian drift induced by progressive waves above rippled and very rough beds. J. Geophysical Res., Vol. 104(C1), pp. 1465-1488.
21.Dean, R.G. and R.A. Dalrymple, 1995. Water wave mechanics for engineers and scientists. Fifth Reprinting, World Scientific, Singapore.
22.Deguchi, I., T. Sawaragi and K. Shiratani, 1988. Applicability of non-linear unsteady Darcy’s law to the waves on permeable layer. Proc. 35th Japanese Conf. on Coastal Eng., JSCE, pp. 487-491. (in Japanese)
23.Deresiewicz, H. and R. Skalak, 1963. On uniqueness in dynamic poroelasticity. Bulletin of the Seismological Society of America, Vol. 53, pp. 783-788.
24.Dingemans, M.W., 1997. Water wave propagation over uneven bottoms, Part II. World Scientific Publishing Co. Pte. Ltd., Singapore.
25.Dong, C.M., 2000. The development of a numerical wave tank of viscous fluid and its applications, Ph. D. Thesis, National Cheng Kung University, Tainan, Taiwan.
26.Dong, C.M., C.J. Huang, C.H. Hung, and H.H. Chang, 2002. Numerical simulation of the wave bottom boundary layer. J. of Chinese Institute of Civil and Hydraulic Eng., Vol. 14, pp. 307-317 (in Chinese).
27.Dong, C.M. and C.J. Huang, 2003. Generation and propagation of water waves in a 2-d numerical viscous wave flume. To be published in J. Waterway, Port, Costal, and Ocean Eng.
28.Driscoll, A.M., R.A. Dalrymple, and S.T. Grilli, 1992. Harmonic generation and transmission past a submerged rectangular obstacle. 23rd Coastal Eng. Conf., ASCE, pp. 1142-1152.
29.Du Toit, C.G. and J.F.A. Sleath, 1981. Velocity measurements close to the ripple beds in oscillatory Flow. J. Fluid Mech., Vol. 112, pp. 77-96.
30.Engelund, F., 1953. On the laminar and turbulent flow of ground water through homogeneous sand. Trans. Dan. Acad. Tech. Sci., 3, No. 4.
31.Ergun, S., 1952. Fluid flow through packed columns. Chem. Engrg. Progress, Vol. 48, pp. 89-94.
32.Forchheimer, P., 1901. Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing., Vol. 45, pp. 1782-1788.
33.Goring, D. and F. Raichlen, 1980. The generation of long waves in the aboratory. 17rd Coastal Eng. Conf., ASCE, pp. 763-783.
34.Gu, Z. and H. Wang, 1991. Gravity waves over porous bottoms. Coastal Eng., Vol. 15, pp. 497-524.
35.Hara, T. and C.C. Mei, 1990a. Oscillating flows over periodic ripples. J. Fluid Mech., Vol. 211, pp. 183-209.
36.Hara, T. and C.C. Mei, 1990b. Centrifugal instability of an oscillatory flow over periodic ripples. J. Fluid Mech., Vol. 217, pp. 1-32.
37.Harlow, F.H. and J.E. Welch, 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, Vol. 8, pp. 2182-2189.
38.Horikawa, K. and A. Watanabe, 1968. Laboratory study on oscillatory boundary layer. 11th Coastal Eng. Conf., ASCE, London, pp. 467-486.
39.Huang, C.J., E.C. Zhang, and J.F. Lee, 1998. Numerical simulation of nonlinear viscous wavefields generated by a piston-type wavemaker. J. Eng. Mech., ASCE, Vol. 124(10), pp. 1110-1120.
40.Huang, C.J. and C.M. Dong, 1999. Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Eng., Vol. 37, pp. 123-148.
41.Huang, C.J. and C.M. Dong, 2001. On the interaction of a solitary wave and a submerged dike. Coastal Eng., Vol. 43, pp. 265-286.
42.Huang, C.J. and C.M. Dong, 2002. Propagation of water waves over rigid rippled beds. J. Waterway, Port, Costal, and Ocean Eng., Vol. 128, pp. 190-201.
43.Huang, C.J., H.H. Chang, and H.H. Hwung, 2003. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Eng., Vol. 49, pp. 1-24.
44.Hunt, J.N., 1959. On the damping of gravity waves propagated over a permeable surface. J. Geophysical Res., Vol. 64, pp. 437 - 442.
45.Hwung, H. H. and K.S. Hwang, 1993. Flow structures over a wavy boundary in wave motion. 9th Symposium on “Turbulent Shear Flows,” Kyoto, pp. 306.1 – 306.4.
46.Hwung, H.H., K.S. Hwang, and B.H. Lee, 1996. Wave boundary layer flows and pore pressures in permeable beds. 25th Coastal Eng. Conf., pp. 3219-3230.
47.Ikeda, S., K. Horikawa, H. Nakamura, and K. Noguchi, 1991. Oscillatory boundary layer over a sand ripple model. Coastal Eng. in Japan, Vol. 34(1), pp. 15-29.
48.Johnson, I.G. and N.A. Carlsen, 1976. Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraulic Res., ASCE, Vol. 14(1), pp. 45-59.
49.Kakinoki, T., K. Takikawa, and F. Yamada, 1999. Characteristics of the turbulent boundary layer along sand-ripples under regular waves. 9th Int. Offshore and Polar Eng. Conf., Brest, Vol. III, pp. 767-774.
50.Kaneko, A. and H. Honji, 1979. Double structures of steady streaming in the oscillatory viscous flow over a wavy wall. J. Fluid Mech., Vol. 93, pp. 727-736.
51.Keulegan, G.H. and L.H. Carpenter, 1958. Forces on cylinders and plates in an oscillating fluid. J. Res. Nat. Bureau of Standards, Vol. 60(5), pp. 423-440.
52.Kozeny, J., 1927. Ũber kapillare Leitung des Wassers im Boden. Sitzungber. Akad. Wiss. Wien, 136, 271-306.
53.Lin, C.Y. and C.J. Huang, 2003. Decomposition of Incident and Reflected Higher Harmonic Waves Using Four Wave Gagues. Accepted, Coastal Eng.
54.Lin, P. and P.L.-F. Liu, 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech., Vol. 359, pp. 239-264.
55.Liu, L.F., 1973. Damping of water waves over porous bed. J. Hydraulic Division., ASCE, Vol. 99. pp. 2263-2271.
56.Liu, L.F., 1977. On gravity waves propagated over a layered permeable bed. Coastal Eng., Vol. 1, pp. 135-148.
57.Liu, L.F. and R.A. Dalrymple, 1984. The damping of gravity water-waves due to percolation. Coastal Eng., Vol. 8, pp. 33 - 49.
58.Liu, L.F., M. H. Davis, and S. Downing, 1996. Wave-induced boundary layer flows above and in a permeable bed. J. Fluid Mech., Vol. 325, pp. 195-218.
59.Liu, P.L.-F., P. Lin, K.A. Chang, and T. Sakakiyama, 1999. Numerical modeling of wave interaction with porous structures. J. Waterway, Port, Coastal, and Ocean Eng., Vol. 125, pp. 322-330.
60.Losada, I.J., 1991. Estudio de la propagación de un tren lineal de ondas por un medio discontinuo. Ph.D. Thesis. Universidad de Cantabria. (in Spanish).
61.Losada, I.J., M.A. Losada, and F.L. Martin, 1995. Experimental study of wave-induced flow in a porous structure. Coastal Eng., Vol. 26, pp. 77-98.
62.Losada, I.J., R. Silva, and M.A. Losada, 1996. 3-D non-breaking regular wave interaction with submerged breakwaters. Coastal Eng., Vol. 28, pp. 229-248.
63.Losada, I.J., M.D. Patterson, and M.A. Losada, 1997. Harmonic generation past a submerged porous step. Coastal Eng., Vol. 31, pp. 281-304.
64.Losada, I.J., 2001. Recent advances in the modeling of wave and permeable structure interaction. Advances in Coastal and Ocean Eng., 7, pp. 163-202.
65.Losada, M.A., A.C. Vidal, and R. Medina, 1989. Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophysical Res., Vol. 94, pp. 557-566.
66.Lyne, W.H., 1971. Unsteady viscous flow over a wavy wall. J. Fluid Mech., Vol. 50, pp. 33-48.
67.Madsen, O.S., 1971. On the generation of long waves. J. Geophysical Res., Vol. 76(36), pp. 8672-8683.
68.Madsen, O.S., 1974. Wave transmission through porous structure. J. Waterway, Harbour and Coastal Eng. Div., Vol. 100, pp. 169-188.
69.Madsen, P.A., R. Murray, and O.R. Sorensen, 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics, Part 1. Coastal Eng., Vol. 15, pp. 371-388.
70.Madsen, P.A. and O.R. Sorensen, 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics, Part 2. Coastal Eng., Vol. 18, pp. 183-204.
71.Mase, H., K. Takeba, and S. Oki, 1995. Wave equation over permeable rippled bed and analysis of Bragg scattering of surface gravity waves. J. Hydraulic Res., ASCE, Vol. 33(6), pp. 789-812.
72.Matsunaga, N., A. Kaneko, and H. Honji, 1981. A numerical study of steady streamings in oscillatory flow over a wavy wall. J. Hydraulic Res., ASCE, Vol. 19(1), pp. 29-42.
73.McDougal, W.G., 1993. State of the Art Practice in Coastal Engineering, Lecture Notes, National Cheng Kung University, Taiwan, pp. 10.25-10.28.
74.Mendez, F., I.J. Losada, and M.A. Losada, 2001. Wave-induced mean magnitudes in permeable submerged breakwaters. J. Waterway, Port, Coastal, and Ocean Eng., Vol. 127, pp. 1-9.
75.Mei, C.C., 1983. The applied dynamics of ocean surface waves. Wiley, New York.
76.Murray, J.D., 1965. Viscous damping of gravity waves over a permeable bed. J. Geophysical Res., Vol. 70, pp. 2325 - 2331.
77.Nakato, T., F.A. Locher, J.R. Glover, and J.F. Kennedy, 1977. Wave entrainment of sediment from rippled beds. Proc. of ASCE, J. Waterway, Port, Coastal and Ocean Eng. Div., Vol. 103 (WW1), pp. 83-99.
78.Ohyama, T. and K.Nadaoka, 1994. Transformation of a nonlinear wave train passing over a submerged shelf without breaking. Coastal Eng., Vol. 24, pp. 1-22.
79.Packwood, A.R. and D.H. Peregine, 1980. The propagation of solitary waves and bores over a porous bed. Coastal Eng., Vol. 3, pp. 221-242.
80.Patankar, S.V., 1979. A calculation procedure for two-dimessional elliptic situations. Numerical heat transfer and fluid flow, McGraw-Hill, New York.
81.Philip, J.R., 1970. Flow in porous media. Ann. Rev. Fluid Mech., Vol. 2, pp. 177-203.
82.Polubarinova-Kochina, P.Y., 1962. Theory of ground water movement. Princeton University Press.
83.Putnam, J.A., 1949. Loss of wave energy due to percolation in a permeable sea-bottom. Trans. Am. Geo. Un., Vol. 30, pp. 349-356.
84.Ranasoma, K.I.M. and J.F.A. Sleath, 1992. Velocity measurements close to the rippled beds. 23rd Coastal Eng. Conf., ASCE, Venice, pp. 2383-2396.
85.Reid, R.O. and K. Kajiura, 1957. On the damping of gravity waves over a permeable sea bed. Trans. Am. Geo. Un., Vol. 30, pp. 662-666.
86.Rojanakamthorn, S., M. Isobe, and A. Watanabe, 1989. A mathematical model of wave transformation over a submerged breakwater. Coastal Eng. in Japan, Vol. 32, pp. 209-234.
87.Rose, H.E., 1945. On the resistance coefficient-Reynolds number relationship for fluid flow through a bed of granular material. Proc. Inst. Mech. Eng., Vol. 153, pp. 141-161.
88.Sakakiyama, T. and R. Kajima, 1992. Numerical simulation of nonlinear wave interacting with permeable breakwaters. 23rd Coastal Eng. Conf., ASCE, pp. 1517-1530.
89.Sato, S., N. Mimura, and A. Watanabe, 1984. Oscillatory boundary layer flow over rippled beds. 19th Coastal Eng. Conf., ASCE, Houston, pp. 2293-2309.
90.Sato, S., K. Shimosako, and A. Watanabe, 1987. Measurements of oscillatory boundary layer flows above ripples with a laser-Doppler velocimeter. Coastal Eng. in Japan, Vol. 30(1), pp. 89-98.
91.Savage, R.P., 1953. Laboratory study of wave energy losses by bottom friction and percolation. Technical Memo No. 31, Beach Eros. Board.
92.Sawamoto, M., T. Yamashita, and T. Kitamura, 1982. Measurements of turbulence over vortex ripple. 18th Coastal Eng. Conf., ASCE, Cape Town, pp. 282-296.
93.Sawargi, T. and I. Deguchi, 1992. Wave on permeable layers. 23th Coastal Eng. Conf., ASCE, Venice, pp. 1531-1544.
94.Scandura, P., G. Vittori, and P. Blondeaux, 2000. Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech., Vol. 412, pp. 355-378.
95.Scheidegger, A.E., 1963. Hydrodynamics in porous media. In Handbuch der Physik 8/2: Strömungsmechanik, ed. S. Flügge, 625-662, Berlin, Springer Verlag.
96.Seabra-Santos, F.J., D.P. Renouard, and A.M. Temperville, 1987. Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech., Vol. 176, pp. 117-134.
97.Sleath, J.F.A., 1970. Wave-induced pressure in bed of sand. J. Hydraulic Division, ASCE, Vol. 96, pp. 367-378.
98.Sleath, J.F.A., 1974. Stability of laminar flow at seabed. J. Waterway, Port, Coastal, and Ocean Eng., Vol. 100(WW2), pp. 105-122.
99.Sleath, J.F.A., 1975. A contribution to the study of vortex ripples. J. Hydraulic Res., ASCE, Vol. 13(3), pp. 315-328.
100.Sollit, C.K. and R.H. Cross, 1972. Wave transmission through permeable breakwaters. 13th Coastal Eng. Conf., ASCE, pp. 1872-1864.
101.Sulisz, W., 1985. Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coastal Eng., Vol. 9, pp. 371-386.
102.Sumer, B.M. and J. Fredsøe, 1999. Wave scour around structures. Advances in Coastal and Ocean Engineering, 4, pp. 191-249.
103.Sumer, B.M., R.J.S. Whitehouse, and A. Tørum, 2001. Scour around coastal structures: a summary of recent research. Coastal Eng., Vol. 44, pp. 153-190.
104.Tang, C.J., V.C. Patel, and L. Landweber, 1990. Viscous effects on propagation and reflection of solitary waves in shallow channels. J. Comput. Physics, Vol. 88, No. 1, pp. 86-113.
105.Ting, F.C.K. and Y.K. Kim, 1994. Vortex generation in water waves propagating over a submerged obstacle. Coastal Eng., Vol. 24, pp. 23-49.
106.Thompson, J.F., Z.U.A. Warsi, and C.W. Matson, 1985. Numerical Grid Generation, Elsevier, New York.
107.Toue, T., K. Nadaoka, and H. Katsui, 1996. Asymmetric boundary layer flow above sand ripples under progressive waves. 25th Coastal Eng. Conf., ASCE, Orlando, pp. 3183-3193.
108.Tunstall, E.B. and D.L. Inman, 1975. Vortex generation by oscillatory flow over rippled surfaces. J. Geophysical Res., Vol. 80(24), pp. 3475-3484.
109.Van Gent, M.R.A., 1994. The modeling of wave action on and in coastal structure. Coastal Eng., Vol. 22, pp. 311-339.
110.Van Gent, M.R.A., 1995 a. Wave interaction with permeable coastal structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
111.Van Gent, M.R.A., 1995 b. Porous flow through rubble-mound material. J. Waterway, Port, Coastal, and Ocean Eng., Vol. 121, pp. 176-181.
112.Ward, J.C., 1964. Turbulent flow in porous media. J. Hydraulic Division, HY5, pp. 1-12.
113.Yasuda, T., S. Shinoda, and T. Hattori, 1994. Soliton-mode wavemaker theory and system for coastal waves. 24th Coastal Eng. Conf., ASCE, pp. 704-718.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top