(18.207.129.82) 您好!臺灣時間:2021/04/19 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳育翔
研究生(外文):Yu-Hsiang Chen
論文名稱:利用地聲探測器探討土石流地聲之特性
論文名稱(外文):Study of the Underground Sound Generated by Debris Flows Using Geophones.
指導教授:黃清哲黃清哲引用關係
指導教授(外文):Ching-Jer Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:95
中文關鍵詞:地聲探測器土石地聲頻率傳遞速度土石流示範觀測站衰減特性
外文關鍵詞:FrequencyUnderground SoundGeophonesPropagation speedDecay
相關次數:
  • 被引用被引用:4
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以地聲探測器(Geophone)量測土石碰撞時所產生之地聲,實驗所得地聲之時域訊號利用快速傅立葉轉換(FFT)及Gabor Transform 轉換為頻域訊號及時間–頻率訊號,以探討土石地聲之頻率、傳遞速度及隨距離衰減特性。本研究之實驗分為兩部份,第一部份是於實驗室內量測石頭以自由落體方式撞擊水槽內之土石材料所產生之地聲。不同石頭重量及不同土石材料對地聲特性的影響,本文作了有系統的分析。此外,本研究進一步測試在不同惡劣情況下,如儀器未能依製造廠原先規定保持水平的情況下,儀器接收訊號情形。這些資訊可提供土石流觀測示範站中地聲探測器安裝及接收訊號之參考。第二部份的實驗係在土石流示範觀測站— 南投縣信義鄉豐丘村豐丘野溪觀測站,進行現場土石碰撞及滾動地聲觀測試驗,了解實際河床中土石地聲之頻率、傳遞速度及隨距離衰減特性。研究顯示實驗室石頭撞擊土石材料所產生之地聲頻率在10 到100 Hz 之間,而地聲之傳遞速度約為100 m/s。而石頭撞擊河床或在河床上滾動所產生的地聲頻率在10 到150 Hz 之間,而地聲之傳遞速度約為1000 m/s。
  The purpose of this study is to investigate the main characteristics of the underground sound generated by a free- falling rock hitting the bed of gravels or the riverbed. The ground vibration was recorded by geophones. The time-domain signals of ground vibration were transformed into the frequency domain by using the Fast Fourier Transform and into the Time-Frequency domain by using the Gabor transform. The experiments were divided into two parts. The first part consisted of
measuring the underground sound caused by a free- falling rock hitting a bed of gravel in a tank. Effects of the inclination angle of the geophone on the recorded signals were also tested. In the second part, the same instrumentation as in the first part was applied to measure the underground sound produced by a free- falling rock hitting a riverbed. The experimental data show that in the tank experiment, the frequency of the underground sound ranges between 10 and 100 Hz and the propagation speed of the underground sound in the gravel bed is about 100 m/s; while the in the field experiments, the frequency is in the range of 10-150 Hz and the propagation speed is about 1000 m/s.
Chinese Abstract..................................I
English Abstract.................................II
Acknowledge.....................................III
Contents.........................................IV
Table Caption....................................VI
Figure Caption..................................VII


Chapter 1 Introduction............................1

Chapter 2 Related Theories........................7
2.1 Propagation of underground sound..............7
2.2 Gabor transform...............................8
2.3 Dimensional Analysis.........................11

Chapter 3 Experimental Set-ups...................16
3.1 Tank Experiment..............................16
3.2 Field experiments............................18
3.3 Work Principles of Geophones.................19

Chapter 4 Results and discussions................22 4.1 Tank Experiments.............................22
4.1.1 Background noises..........................23
4.1.2 Frequency of the underground sound.........24
4.1.3 Effect of the inclination of geophone......25
4.1.4 Propagation speed and decay rate of the underground sound................................26
4.2 Field experiments............................30
4.2.1 Frequency of the underground sound.........30
4.2.2 Propagation speed and spatial decay rate of underground sounds...............................32

Chapter 5 Conclusions and Suggestions............35
5.1 Conclusions..................................35
5.2 Suggestions..................................36
1. Arattano, M, “Monitoring the presence of the debris- flow front and its velocity through ground vibration detectors”, The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, pp.
719-730, 2003.
2. Bänziger, R., and H. Burch, “Acoustic sensors (hydrophones) as indicators for bed load transport in a mountain torrent”, Hydrology in Mountainous Region, I. Hydrological Measurements, the Water Cycle (Proc. of two Lausanne Symposia),pp. 207-214, IAHS Publ. No. 193, 1990.
3. Brigham, E. O., “The Fast Fourier Transform, Prentice-Hall”, Inc.A Division of Simon and Schuster Englewood Cliffs, New Jersey, 1988.
4. Chen, J., S. Chang, and M. Yeng, Characteristics of underground sound generated by debris flows and the fabrication of NJ-2 type debris- flow alarm”,
2nd National Debris Flow Conference, China, 1991 (In Chinese).
5. Das, B. M., “Principles of Geotechnical Engineering”, PWS Pub. Company, Forth Edition, 1998.
6. Friedlander, B., and B. Porat, “Detection of transient signals by the Gabor representation”, IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 2, pp. 169-180, 1989.
7. Friedlander, B., and A. Zeira, “Over-sampled Gabor representation for transient signals”, IEEE Trans. Signal Processing, Vol. 43, No. 9, pp. 2088-2094, 1995.
8. Gabor, D., “Theory of communication”, J. Inst. Electr. Eng., Vol. 93, pp. 429-459, 1946.
9. Hadley, K.C., and R.G. LaHusen, “Deployment of an acoustic flow monitor system and examples of its application at Mount Pinatubo, Philippines”,
American Geophysical Union 1991 Fall Meeting, abstract, p. 67, 1991.
10. Hardin, B.O., and F.E. Richart, “Elastic wave velocities in granular soils”, J. Soil Mech. and Foundations Div., Proceedings of ASCE, Vol. 89, pp. 33-65, 1963.
11. Hardy, H.R., “Application of acoustic emission techniques to rock mechanics research”, Acoustic Emission, ASTM STP 505, American Society for Testing and Materials, pp. 41-83, 1972.
12. Hsu, M. T., “On the degree of earthquake risk in Taiwan”, Proc. 4th Japan Earthq. Eng. Symp., pp. 59-64, 1975.
13. Huang, C. J, Shieh, C.L., and Yin, H.Y., “Laboratory Study of the Underground Sound Generated by Debris Flows”, Published in J. Geophys. Res., 2003
14. Itakura, Y., N. Kamei, J.I. Takahama., and Y. Nowa, “Real time estimation of discharge of debris flow by an acoustic sensor”, 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp.127-131, 1997a.
15. Itakura, Y., Y. Koga, J.I. Takahama, and Y. Nowa, “Acoustic detection sensor for debris flow”, The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, U.S.A., pp. 747-756, 1997b.
16. Itakura, Y., N. Fujii and T. Sawada, “Basic characteristics of ground vibration sensors for the detection of debris flow”, Phys. Chem. Earth (B), Vol. 25, No. 9, pp.717-720, 2000
17. Itakura, Y., T., Kitajima, K. Endo, and T. Sawada, “A new double-axes accelerometer debris-flow detection system”, The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, pp. 319-324, 2000.
18. Iverson, R.M., “The physics of debris flows”, Reviews of Geophysics, Vol. 35, pp. 245-296, 1997.
19. Lavigne, F., J.C. Thouret, B. Voight, K. Young, R. LaHusen, J. Marso, H. Suwa, A. Sumaryono, D.S. Sayudi, and M. Dejean, “Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia”, Journal of Volcanology and Geothermal Research, Vol. 100, pp. 457-478, 2000.
20. Marcial S.S., A.A. Melosantos, K.C. Hadley, R.G. LaHusen, and J.N. Marso,“Instrumental lahar monitoring of Mt. Pinatubo, In: Newhall, C.G. and
Punongbayan, R.S. (Eds.)”, Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1015-1022, 1993.
21. Miller, G.F., and H. Pursey, “On the partition of energy between elastic waves in a semi- infinite solid”, Proceedings, Royal Society, London, Series A, Vol. 233, pp. 55-59, 1955.
22. Okuda, S., K. Okunishi, and H. Suwa, “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade”, Excursion Guide-book of the 3rd
Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
23. Rickenmann, D., D. Weber, and B. Stepanov, “Erosion by debris flows in field and laboratory experiment”, The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, pp. 883-894, 2003.
24. Savage, S. B., “The mechanics of rapid granular flows”, Adv. Appl. Mech., 24, pp.289-386, 1984.
25. Suwa, H., T. Yamakoshi, and K. Sato, “Relationship between debris- flow discharge and ground vibration”, The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, pp. 311-318,
2000.
26. Suwa, H., J. Akamatsu, and Y. Nagai, “Energy radiation by elastic waves from debris flows”, The Third Int. Conf. on Debris-Flow Hazards Mitigation:
Mechanics, Prediction, and Assessment, Switzerland, pp. 895-904, 2003.
27. Takahashi, T., “Debris flow”, International Association for Hydraulic Research (IAHR) Monograph, Balkema, Rotterdam, 1991.
28. Tungol, N.M., and M.T. Regalado, Rainfall, “acoustic flow monitor records and observed lahars of the Sacobia River in 1992”, In: Newhall, C.G. and Punongbayan, R.S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1023-1032, 1997.
29. Udias, A., “Principles of seismology”, Cambridge University Press, 1999.
30. Woods, R.D., “Screening of surface waves in soils”, J. Soil Mech. and Foundations Div., Proceedings of ASCE, Vol. 94, pp. 951-979, 1968.
31. Wu, J., Z. Kang, L. Tian, and S. Zhang, “Observation and investigation of debris flows at Jiangjia Gully in Yunnan Province”, Dongchuan Debris Flow Research Station, Chinese Academy of Sciences, Science Press, Beijing, 1990 (in Chinese).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔