跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許仁哲
研究生(外文):Jen-Che Hsu
論文名稱:內應力對無電鍍鎳銅磷析鍍於鋁基材上影響之研究
論文名稱(外文):The Study of the Effect of Internal Stress on Electroless Ni-Cu-P Deposited on Al Substrate
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:124
中文關鍵詞:擴散應力無電鍍鎳非晶質
外文關鍵詞:DiffusionStressElectroless NickelAmorphous
相關次數:
  • 被引用被引用:9
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:2
由於添加銅元素於無電鍍鎳鍍層中可改善鍍層的導電性、熱穩定性、抗腐蝕能力及可焊性等特性,同時無電鍍鎳銅磷鍍層本身具有非晶質結構和選擇性析鍍之特性,因此增加其在電子構裝中擴散障礙層及高硬度工業用元件方面的應用價值。然而在無電鍍鎳銅磷鍍層的實際應用中仍然遇到殘留拉伸應力的問題,過量的拉伸應力可能使得鍍層產生剝裂、破裂及加速應力腐蝕等現象。因此本研究在鍍液中添加Saccharin(C7H5NO3S)改變無電鍍鎳銅磷鍍層內應力的大小及種類,並觀察應力對鍍層熱性質及機械性質的影響。
然而,由於銅與鎳氧化還原電位的差異,在析鍍無電鍍鎳銅磷三元合金鍍層時仍然遇到元素分佈不均勻的問題。本研究發現調整鉗合劑的使用量並加以磁石攪拌下析鍍,可以達到較佳的鍍層均勻性及較高的析鍍速率。實驗結果顯示15 g/L NiSO4.6H2O、0.2 g/L CuSO4.5H2O、15 g/L NaH2PO2.H2O、30 g/L Na3C6H5O7.2H2O、40 g/L NH4Cl, pH值8.0之鍍液組成,在溫度90℃並加以磁石攪拌之析鍍條件下,可以獲得均勻性佳的非晶質Ni-11.51Cu-7.06P鍍層。
本研究係利用此一析鍍條件並在鍍液中分別添加0、8及10 g/L 糖精(Saccharin)來分別得到具拉伸應力、無應力及壓縮應力的無電鍍鎳鍍層,並進一步探討鍍層經時效處理後內應力對元素擴散及結晶行為的影響。研究結果顯示,在150℃時效時,銅原子是在Ni-Cu-P/Al擴散偶中擴散的主要元素。拉伸應力提升鎳銅磷鍍層中銅原子通過界面進入基材的擴散淨通量,並且促進了非晶質鍍層的結晶化行為與Ni3P及Al2Cu化合物的生成。然而無應力的鍍層經150℃時效處理後則無明顯的擴散行為。
本研究亦利用此由糖精的添加所得到不同應力狀態的無電鍍鎳銅磷鍍層,並進一步探討添加糖精對無電鍍鎳銅磷鍍層析鍍於鋁基材上之機械性質及破裂行為之影響。研究結果顯示糖精添加量從0 g/L增加至12 g/L,除了使鍍層內的金屬顆粒(Nodule)成長外,並可以逐漸消除鍍層中的空缺(Void),也因此改進了試片的微硬度值、降伏應力、彈性模數及極限抗拉應力。鍍層中的空缺數量也同樣影響了試片的破裂機制。當糖精添加量介於0~2 g/L時,鍍層的破裂機制呈現穿粒(Trans-nodular)破裂;而當糖精添加超過4 g/L時,破裂機制轉變成沿粒(Inter-nodular)破裂。
The incorporation of Cu with electroless Ni-P alloy will improve the electrical conductivity, thermal stability, corrosion resistance, solderability. The deposit exhibits amorphous structure and the deposition process has selective deposition characteristic. All of these properties render electroless Ni-Cu-P to potential application for diffusion barrier and hard industrial component. Nevertheless, the practical application of electroless Ni-Cu-P deposit still encounters the problem of excess intrinsic tensile stress that will cause peeling, cracking, and accelerate stress corrosion. For this reason, this present work manipulated the type and magnitude of stress in electroless Ni-Cu-P deposit on Al by controlling the concentration of saccharin (C7H5NO3S) in the plating solution, and investigated the thermal and mechanical properties of Ni-Cu-P deposits on Al with respect to saccharin addition and the stress.
The deposition of electroless Ni-Cu-P deposit still encounters the difficulty of non-uniform composition in deposit caused by the difference in redox potential between copper and nickel. It was found in this study that the uniformity of elemental distribution in Ni-Cu-P deposits and higher deposition rate can be improved by adjusting the addition of complexing agent in deposition solution and stirring process. An amorphous and uniform Ni-21.66Cu-11.60P deposit was produced when deposited in a solution consists of 15 g/l NiSO4.6H2O, 0.2 g/l CuSO4.5H2O, 15 g/l NaH2PO2.H2O, 30 or 40 g/l Na3C6H5O7.2H2O, and 40 g/l NH4Cl at pH 8.0 and 90℃ with magnetic stirring.
Consequently, 0, 8, and 10g/l saccharin was added in the specific deposition solution to obtain tensile, non-, and compressive stress of the electroless Ni-Cu-P deposits for studying the effect of stress on diffusion and crystallization behavior of the deposit. The results show that Cu is the predominant metallic diffusion element in the electroless Ni-Cu-P/ Al specimen upon aging at 150℃. The diffusion flux of Cu across the interface into the substrate is greatly enhanced by tensile stress of the deposit. Tensile stress of the deposit also enhances crystallization of the amorphous deposit and the formation of Ni3P and Al2Cu in the deposit upon aging. The deposit with zero stress exhibits nearly invisible diffusion flux upon aging.
This present work also investigated the mechanical properties and fracture behaviors with respect to saccharin addition and thus the different types of stress of Ni-Cu-P deposits on Al. The results show that an increase in saccharin addition, from 0 to 12 g/L, in the electroless deposition bath results in the growth of deposit nodule. It also eliminates the void from the deposit. The microhardness of the deposit, yield strength, modulus of elasticity, and ultimate tensile strength of the deposited Ni-Cu-P/Al specimen were thus improved. The fracture of the deposit takes place trans-nodularly at 0 and 2 g/L saccharin and changes to inter-nodular when the saccharin addition is above 4 g/L.
中文摘要 ------Ⅰ
英文摘要 Ⅲ
誌謝 ------ Ⅴ
總目錄 ------ Ⅵ
表目錄 ------ Ⅸ
圖目錄 ------ Ⅹ
符號表 ------ ⅩⅣ
中英文對照表 ------ ⅩⅥ
第壹章 簡介 ------ 1
1-1 擴散障礙層 ------ 1
1-1-1 擴散障礙層之作用原理 ------ 2
1-1-2 擴散障礙層之種類 ------ 4
1-2 無電鍍鎳 ------ 7
1-2-1 無電鍍鎳反應之原理 ------ 7
1-2-2 無電鍍鎳鍍液之組成 ------ 8
1-2-3 鋁基材析鍍無電鍍鎳的活化方式 ------ 10
1-2-4 三元無電鍍鎳合金之發展 ------ 11
1-3 應力 ------ 14
1-3-1 鍍層之內應力的種類 ------ 14
1-3-2 鍍層中本質應力之成因 ------ 16
1-3-3 影響鍍層內應力之製程因素 ------ 22
1-3-4 應力對擴散的影響 ------ 26
1-4 研究目的 ------ 29
第貳章 實驗方法與步驟 ------ 31
2-1 實驗構想及設計 ------ 31
2-2 無電鍍鎳銅磷合金之析鍍及性質分析 ------ 32
2-2-1 鋁基材上析鍍無電鍍鎳銅磷鍍層 ------ 32
2-2-2 鍍層表面形態、化學組成與晶體結構之分析 ------ 35
2-2-3 鍍層之縱深及橫截面成分分析 ------ 35
2-2-4 穿透式電子顯微鏡對鍍層化學組成及晶體結構之分析 ------ 36
2-3 Ni-Cu-P/Al擴散偶時效反應之分析 ------ 39
2-3-1 鋁基材上析鍍無電鍍鎳銅磷鍍層 ------ 39
2-3-2 Ni-Cu-P/Al試片內應力之分析 ------ 40
2-3-3 Ni-Cu-P/Al擴散偶之時效熱處理 ------ 41
2-3-4 Ni-Cu-P/Al擴散偶之元素擴散分析 ------ 41
2-3-5 Ni-Cu-P/Al界面金屬間化合物生成之分析 ------ 43
2-4 Ni-Cu-P/Al機械性質之分析 ------ 43
2-4-1 鋁基材上析鍍無電鍍鎳銅磷鍍層 ------ 43
2-4-2 試片硬度之分析 ------ 45
2-4-3 試片拉伸行為之分析 ------ 45
2-4-4 試片破裂行為之分析 ------ 47
第參章 均質化非晶質無電鍍鎳銅磷合金之製作 ------ 48
3-1 攪拌行為對無電鍍鎳銅磷合金氫含量之影響 ------ 50
3-2 鍍液組成對無電鍍鎳銅磷合金化學組成之影響 ------ 54
3-3 結論 ------ 65
第肆章 內應力對Ni-Cu-P/Al試片熱性質之影響 ------ 66
4-1 Saccharin對無電鍍鎳銅磷鍍層微結構及性質之影響 ------ 67
4-2 時效對無電鍍鎳銅磷鍍層結構及內應力之影響 ------ 73
4-3 內應力對Ni-Cu-P/Al試片擴散之影響 ------ 78
4-4 內應力對Ni-Cu-P/Al試片結晶行為之影響 ------ 88
4-5 結論 ------ 90
第伍章 內應力對Ni-Cu-P/Al試片機械性質之影響 ------ 91
5-1 內應力對Ni-Cu-P/Al試片硬度之影響 ------ 92
5-2 內應力對Ni-Cu-P/Al試片拉伸行為之影響 ------ 94
5-2-1 降伏應力(YS)及極限抗拉應力(UTS) ------ 95
5-2-2 彈性模數(E) ------ 95
5-2-3 伸長率 ------ 98
5-2-4 拉伸前後Ni-Cu-P/Al試片表面型態之變化 ------ 98
5-3 內應力對Ni-Cu-P/Al試片機械性質之影響 ------ 106
5-4 內應力對Ni-Cu-P/Al試片破裂機構之影響 ------ 109
5-5 Ni-Cu-P/Al試片中內應力產生之機構 ------ 110
5-6 結論 ------ 113
第陸章 總結 ------ 114
參考文獻 ------ 116
自述 ------ 123
1. J. H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chap. 3.
2. C. H. Zhong and S. Yi, Soldering Surf. Mount Technol., 11(1999)44.
3. R. H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau, Microelectron. Reliab., 38(1998)1307.
4. S. Y. Jang and K. W. Paik, Soldering Surf. Mount Technol., 10(1998)29.
5. M. A. Nicolet, Thin Solid Films, 52(1978)415.
6. 楊恆傑,直流式磁鍍鋯及氧化鋯薄膜性質、結構與擴散阻障層應用之研究,碩士論文(2002).
7. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, 1990, Chap. 1.
8. G. G. Gawrilov, Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd., Redhill, Surrey, 1979, Chap. 1.
9. J. W. Dini, Electrodeposition, Noyes Publications, Park Ridge, New Jersey, USA, 1993, Chap. 7.
10. C. J. Chen and K. L. Lin, Thin Solid Films, 370(2000)106.
11. P. G. Kim and K. N. Tu, Mater. Chem. Phys., 53(1998)165.
12. J. I. Han and S. J. Hong, Jpn. J. Appl. Phys., 36(1997)2091.
13. K. L. Lin and S. Y. Chang, Thin Solid Films, 288(1996)36.
14. G. Qi, G. J. Fokkink, and K. H. Chew, Thin Solid Films, 406(2002) 219.
15. B. R. Strohmzier, W. T. Evan, and D. M. Schrall, J. Mater. Sci., 28(1993)1563.
16. N. Krasteva, V. Fotty, and S. Armyanov, J. Electrochem. Soc., 141(1994)2864.
17. N. Krasteva, S. Armyanov, J. Georgieva, and N. Avramova, and V. Fotty, J. Electron. Mater. 24(1995)941
18. W. J. Tomlinson, M. W. Carroll, J. Mater. Sci., 25(1990)4972.
19. S. F. Luo, E. M. Ma, and P. X Li, J. Vac. Sci. Technol., A4(1986)2862.
20. D. Tachev, J. Georgieva, and S. Armyanov, Electrochim. Acta, 47(2001)359.
21. J. P. G. Farr and A. Abbas Noshani, Trans. IMF, 74(1996)221.
22. A. F. Schmeckenbecher, plating, 58(1971)905.
23. D. Kim, H. Matsuda, K. Aoki, and O. Takano, Plat. Surf. Finish., 83(1996)35.
24. S. Hotta, M. Sugano, and H. Honma, J. Sur. Fin. Japan, 44(1993)217.
25. M. Gulla, U.S. Pat. 3,764,352 (1973).
26. C. Y. Lee and K. L. Lin, Jpn. J. Appl. Phys. Part 1, 33(1994)4708.
27. O. Takano and K. Aoki, J. Met. Finish. Soc. Jpn., 34(1983)316.
28. Y. W. Wang, C. G. Xiao, and Z. G. Deng, Plat. Surf. Finish., 79(1992)57.
29. K. H. Hur, J. H. Jeong, and D. N. Lee, J. Mater. Sci., 26(1991)2037.
30. C. J. Chen and K. L. Lin, J. Electrochem. Soc., 146(1999)137.
31. C. J. Chen and K. L. Lin, J. Electron. Mater., 29(2000)1007.
32. H. Nawafune, T. Uegaki, and S. Mizumoto, Trans. IMF, 76(1998)231.
33. G. W. Powell, S. E. Mahmound, and K. Mills (Ed.), Metals Handbook, 9th Edition, Vol. 11, Metals Park, Ohio, 1986.
34. M. Ohring, The Materials Science of Thin Films, Academic Press, San Diego, USA, 1992, Chap. 9.
35. S. A. Armyanov, Metal Finish., 90(1992)36.
36. 劉嵩俊,鋼鐵內應力之研究和應用,中華民國鑄造學會,1997年.
37. W. Buckel, J. Vac. Sci. Technol., 6(1969)606.
38. R. Weil, Plating, 57(1970)1231.
39. R. Weil, Plating, 58(1971)50.
40. R. Weil, Plating, 58(1971)137.
41. M. F. Doerner, W. D. Nix, CRC Crit. Rev. Solid State Mater. Sci., 14(1988)225.
42. P. Chaundri, J. Vac. Sci. Technol., 9(1972)520.
43. D. W. Hoffman and J. A. Thornton, J. Vac. Sci. Technol., 16(1979)134.
44. J. W. Dini, Electrodeposition, Noyes Publications, Park Ridge, New Jersey, USA, 1993, Chap. 9.
45. J. B. Kushner, Stress in Electroplated Metals, Metal Progress, 1962.
46. U. Landau, Plating-New Prospects for an Old Art, Plenum Press, New York, 1982.
47. J. B. Kushner, Metal Finish., 56(1958)81.
48. H. Merer, Defect and Diffusion Forum, 129-130(1996)57.
49. P. Curie, J. Physique(Paris), 3(1894)393.
50. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 1953.
51. H. C. Bauer, J. Völkl, J. Tretkowski, and G. Alefeld, Z. Phys., B29(1978)17.
52. J. Snoek, Jour. Physica, 6(1939)591.
53. R. W. Balluffi and L. I. Seigle, Acta Metall., 3(1955)170.
54. J. Cahn, Acta Metall., 10(1962)179.
55. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, 1990, Chap. 4.
56. S. Armyanov, O. Steenhaut, N. Krasteva, J. -L. Delplancke, R. Winand and J. Vereecken, J. Electrochem. Soc., 143(1996)3692.
57. H. A. Storms, K. F. Brown, and J. S. Steln, Anal. Chem., 49(1977)2023.
58. A. Brenner and S. Senderoff, J. Res. NBS, 42(1949)105.
59. R. B. Ross, Metallic Materials Specification Handbook, 3rd Edition, E. & F. N. Spon, London, 1980, Chap. 1.
60. C. R. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials, Prentice-Hall, New Jersey, USA, 1973, Chap. 6.
61. E. W. White and G. G. Johnson, X-ray Emission and Absorption Edge Wavelengths and Interchange Settings for LiF Geared Curved Crystal Spectrometers, Pennsylvania State University Special Publication, 2nd Edition, 1979, No. 1-70.
62. L. V. Azaroff, Elements of X-ray Crystallographey, Mc-Graw Hill, New York, 1968, Chap. 5.
63. B. D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison-Wesley, Reading, 1978, Chap. 1.
64. M. Cherkaoui, A. Srhiri, and E. Chassaing, Plat. Surf. Finish., 79(1992)68.
65. K. S. Rajam, I. Rajagopal, and S. R. Rajagopalan, Met. Finish., 41(1990)88.
66. A. Hung, Plat. Surf. Finish., 75(1988)62.
67. H. Ashassi-Sorkhabi, H. Dolati, N. Parvini-Ahmadi, and J. Manzoori, Plat. Surf. Sci., 79(1992)68.
68. E. Chassaing, M. Cherkaoui, and A. Srhiri, J. Appl. Electrochem., 23(1993)1169.
69. E. Chassaing, K. Vu Quang, and R. Wiart, J. Appl. Electrochem., 17(1987)1267.
70. A. Hung and K. M. Chen, J. Electrochem. Soc., 136(1989)72.
71. K. Liu, S. Li, S. Bi, H. Xue, and X. Liu, Rare Metals, 17(1998)228.
72. S. Armyanov, J. Georgieva, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, and A. Ruffini, Electrochemical and Solid-State Letters, 2(1999)323.
73. H. S. Yu, X. Sun, S. F. Luo, Y. R. Wang, and Z. Q. Wu, Appl. Surf. Sci., 191(2002)123.
74. T. Miyake, M. Kume, K. Yamaguchi, D. P. Amalnerkar, and H. Minoura, Thin Solid Films, 397(2001)83.
75. S. Armyanov, S. Vitkova, and O. Blajiev, J. Appl. Electrochem., 27(1997)185.
76. H. H. Trieu and R. R. Chandran, J. Electrochem. Soc., 136(1989)2218.
77. K. Masui, H. Tamemasa, and S. Maruno, Bull. Nagoya Inst. Technol., 35(1983)247.
78. Y. Zuo and R. M. Latanision, Mater. Sci. Eng., A159(1992)87.
79. L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, Electrochim. Acta., 47(2002)4139.
80. H. S. Yu, S. F. Luo, and Y. R. Wang, Surf. Coat. Technol., 148(2001)143.
81. K. Parker, Plat. Surf. Finish., 68(1981)71.
82. K. Parker and H. Shah, Plating, 58(1971)230.
83. J. Philibert, Defect and Diffusion Forum, 129-130(1996)3.
84. F. A. Lewis, K. Kandasamy, and X. Q. Tong, Int. J. Hydrogen Energy 27(2002)687.
85. A. H. Cottrell, Intermetallics, 4(1996)1.
86. A. Shankar and L. L. Seigle, Metall. Trans., A, Phys. Metall. Mater. Sci., 9(1978)1467.
87. J. Lipkowski and P. N. Ross, Adsorption of Molecules at Metal Electrodes, VCH Publishers, New York, 1992.
88. W. Plieth, Electrochim. Acta, 37(1992)2115.
89. L. Oniciu and L. Muresan, J. Appl. Electrochem., 21(1991)565.
90. T. C. Franklin, Surf. Coat. Technol., 82(1996)65.
91. S. Trasatti, Electrochim. Acta, 37(1992)2137.
92. T. C. Franklin, Surf. Coat. Techno., 30(1987)415.
93. L. Oniciu and L. Muresan, J. Appl. Electrochem., 21(1991)565.
94. J. K. Dennis and T. E. Such, Nickel and Chromium Plating, 3rd Edition, ASM, Materials Park, Ohio, 1993, Chap. 5.
95. R. Weil, G. J. Stanko, and D. E. Moser, Plat. Surf. Finish., 63(1976)34.
96. G. W. Powell, S. E. Mahmound, and K. Mills (Ed.), Metals Handbook, 9th Edition, Vol. 8, Metals Park, Ohio, 1986.
97. D. C. William, Materials Science and Engineering, John Wiley & Sons Inc., 3nd Edition, 1994.
98. S. H. Mohamed, O. Kappertz, J. M. Ngaruiya, T. P. Leervad Pedersen, R. Drese, and M. Wuttig, Thin Solid Films, 429(2003)135.
99. M. J. J. Theunissen, J. M. L. van Rooij-Mulder, C. W. T. Bulle-Lieuwma, D. E. W. Vandenhoudt, D. J. Gravesteijn, and G. F. A. van de Walle, J. Cryst. Growth., 118(1992)125.
100. J. H. Jou, L. Hsu, S. Yeh, and T. Shyy, Thin Solid Films, 201(1991)69.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top