(3.215.183.251) 您好!臺灣時間:2021/04/22 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建泰
研究生(外文):Chien-Tai Lin
論文名稱:覆晶接合銲錫隆點及其底層金屬之研究
論文名稱(外文):Investigations on Flip Chip Solder Bump and Under Bump Metal
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:140
中文關鍵詞:覆晶接合銲錫隆點擴散障礙層電鍍銅隆點底層金屬可靠度
外文關鍵詞:Flip ChipSolder BumpDiffusion BarrierElectroplated CopperUBMReliability
相關次數:
  • 被引用被引用:3
  • 點閱點閱:248
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
銲錫隆點底層金屬(Under Bump Metal;UBM)與銲錫合金之界面反應會影響銲錫隆點之材料性質,因此在材料選擇和製程條件上都必須對此加以控制,尤其是整個底層金屬的結構與設計。本研究嘗試析鍍幾乎完全不固溶的的非晶質Cu1-xTax,試圖找出一尚未被嘗試過的覆晶接合用UBM結構Si/Ta/Cu1-xTax/Cu/Cu1-xTax/Cu/Solder,包括結合層、擴散障礙層及潤濕層,並在實驗室可完成的構裝層級範圍內測試其對不同鉛含量銲錫之可靠度。

本研究以真空多靶濺鍍的方式製備非晶質的Cu1-xTax合金薄膜,探討應用其為結合層及擴散障礙層的可行性;Cu的添加會大幅降低非晶質Cu1-xTax合金薄膜的電阻值,可是甫濺鍍完成的Si/Cu1-xTax界面會立即形成Cu3Si與TaSi2,其中Cu3Si的形成非常不利於Si/Cu1-xTax/Cu中擴散障礙層的效果,不論Cu1-xTax的成分為何(x=72~100),以真空濺鍍方式製備的Si/Cu1-xTax/Cu各鍍層之間的結合強度皆超過6 kpsi,確為一極佳的結合層材料,當x=87~100時,Si/Cu1-xTax/Cu經過600℃退火處理30min之後,該Cu1-xTax仍具有擴散障礙層的效果。

本研究控制電鍍銅製程中的電流密度及析鍍時間,並探討析鍍參數與電鍍銅鍍層的表面型態、微結構及電性的關係;在本研究的三種電流密度之下(1、1.5及2A/dm2),電鍍銅鍍層的片電阻及電阻率皆隨鍍層厚度的增加而降低,分析結果顯示決定鍍層電性的主因並不是鍍層銅晶粒的大小及鍍層表面粗糙度,而是鍍層缺陷的多寡及密度,隨著電鍍的進行,銅鍍層金屬顆粒越來越大的同時,顆粒間的粒界及缺陷密度會越來越少,為了降低其表面能,(111)優選方向及(111)/(200)繞射峰強度比會隨之增加,這將有助於降低其電阻率。

本研究探討電鍍銅表面粗糙度及助熔劑的塗佈方式對於63Sn-37Pb及無鉛銲錫潤濕行為的影響,並以去離子水的潤濕行為為對照;去離子水滴於銅鍍層的接觸角與鍍層表面粗糙度成反比,助熔劑同時塗佈在銲錫球及電鍍銅鍍層表面有助於降低銲錫球在銅電鍍層上的接觸角,且該接觸角隨著鍍層表面粗糙度之增加而減小。

本研究以Si/Ta/Cu1-xTax/Cu/Cu1-xTax/Cu/Sn-Pb探討鉛錫合金之固相/液相及固相/固相界面反應,以及剪力強度之變化分析;重流之後,63Sn-37Pb與Cu的界面形成扇狀型態的Cu6Sn5介金屬化合物,而95Pb-5Sn與Cu的界面則形成Cu3Sn介金屬化合物,且重流次數的增加使兩種介金屬化合物的厚度增厚;高溫時效之後,Cu/63Sn-37Pb界面扇狀型態的Cu6Sn5介金屬化合物,在靠近銲錫的部分其型態會轉變成為層狀結構,遠離銲錫的部分則轉變為Cu3Sn,時效使整個介金屬化合物的厚度增厚;Cu/95Pb-5Sn界面處則形成Cu3Sn介金屬化合物,該介金屬化合物的厚度並不隨著時效時間的增加而改變;一次重流之後的63Sn-37Pn與95Pb-5Sn銲錫隆點,剪力測試的破壞面都發生在銲錫內部,其剪力強度只與銲錫本身有關,可是在多次重流及高溫時效之後,剪力強度皆急遽下降,形成所謂的混合型的破斷,也就是該破斷面橫跨UBM、介金屬化合物及銲錫。
Interactions between under bump metal and solder will affect the material property of solder bump. Therefore, the design and manufacturing of the UBM and solder bump should be conducted carefully. Amorphous Cu1-xTax and a new structure of under bump metal (Si/Ta/Cu1-xTax/Cu/Cu1-xTax/Cu/Solder) for flip chip were investigated. The investigation was also performed for the adhesive layers, diffusion barrier layers and wetting layers. Reliabilities of this new packaging structure were tested for different Pb content solders.

Amorphous Cu1-xTax films were prepared by multi-targets sputtering depositions and were considered to be adhesive layers and diffusion barrier. The incorporation of Cu will greatly decrease the resistivity of Cu1-xTax. However, Cu3Si and TaSi2 were formed at the interface of Si/Cu1-xTax in the as-sputtered deposits. The adhesive strengths within the Si/Cu1-xTax/Cu were all above 6 kpsi for x=72~100. Annealing results in the growth of Cu3Si grains that degrades the characters of diffusion barrier. But the Cu1-xTax (x=87~100) is still effective as a diffusion barrier.

Current densitiy and deposition time were the main factors investigated in the Cu electroplating process. The correlation between surface morphology, microstructure, electrical property of Cu plating and the experimental parameters were discussed. Sheet resistance and resistivity of the Cu plating will decrease with the increase of the Cu layer thickness. The surface roughness might not be the dominate parameter but the density of nodule boundary in the porous films would affect the electrical reisitivity of the electroplating Cu. The surface morphology of nodules affected by increasing deposition time and decreasing current density will enhance the XRD (111)/(200) peak intensity ratio and decrease sheet resistance and resistivity of electroplated Cu.

Surface roughness of Cu layers and flux daubing methods of 63Sn-37Pn and Pb-free solders were investigated to understand the wetting behavior. The wetting behavior of de-ionized water was also investigated for reference. The contact angle of the de-ionized water drop decreased with the increase of Cu layer surface roughness. Daubing flux on both solder ball and Cu layer was beneficial to the cleaning of oxide and lower the contact angle. Contact angles of solders on Cu plating also decrease with the increase of Cu layer surface roughness.

The Solid/Liquid and Solid/Solid interfacial interactions within Si/Ta/Cu1-xTax/Cu/Cu1-xTax/Cu/Sn-Pb multilayer and the shear strength of the solder bump were analyzed. After a reflow, the scallop-shape Cu6Sn5 IMC (Intermetallic Compound) was formed at the interface of Cu/63Sn-37Pb, and the layer-type Cu3Sn IMC was formed at the interface of Cu/95Pb-5Sn . With the increase in reflow time, the thickness of these two IMCs increased. After aging, the scallop-shape Cu6Sn5 IMCs near solders transformed into layer-type morphology, and that away from solders transformed into Cu3Sn. The thickness of the whole IMC layer increases with the aging time. However, the thickness of the Cu3Sn formed in Cu/95Pb-5Sn did not change with the increase in aging time. The shear fracture always happened within the solders (63Sn-37Pb and 95Pb-5Sn), and the shear strength is only determined by the solder. After multi-reflows, the shear strength drops down and a mixed-type fracture surface happened among the UBM, IMC and solder.
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
總目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
中英文對照表 ⅩⅤ
第壹章 簡介 1
1-1 電子構裝及覆晶接合技術之發展與應用 1
1-1-1 電子構裝技術 1
1-1-2 覆晶接合技術 3
1-2 銲錫隆點材料與製程技術 5
1-2-1 銲錫隆點結構 5
1-2-2 銲錫隆點製程技術 9
1-3 研究構想與目的 14
第貳章 實驗方法與步驟 16
2-1 非晶質Cu1-xTax合金薄膜之製備與分析 16
2-1-1 非晶質Cu1-xTax合金薄膜之製備 16
2-1-2 非晶質Cu1-xTax合金薄膜之成分分析 18
2-1-3 Cu1-xTax合金薄膜及Si/Cu1-xTax/Cu交互作用反應生成物顯微
及晶體結構分析 18
2-1-4 結合強度之分析 19
2-1-5 厚度及電性之量測 21
2-2 電鍍銅之製備與性質分析 21
2-2-1 電鍍銅之製備 21
2-2-2 表面型態及粗糙度之分析 22
2-2-3 電性及結晶性之分析 23
2-2-4 潤濕性質之分析 23
2-3 銲錫隆點之製備與可靠度測試分析 25
2-3-1 微影製程 25
2-3-2 製備Si/Ta/Cu1-xTax/Cu/Cu1-xTax/Cu多層膜及剝除光阻 27
2-3-3 二次對位之微影製程 30
2-3-4 電鍍銅 30
2-3-5 電鍍鉛錫銲錫 31
2-3-6 剝除光阻及蝕刻Cu連續導電薄膜 31
2-3-7 銲錫重流 31
2-3-8 時效熱處理 33
2-3-9 多次重流 33
2-3-10 銲錫隆點之剪力強度測試 33
第參章 非晶質Cu1-xTax擴散障礙層製備與分析 37
3-1 Cu1-xTax合金薄膜結晶性之分析 38
3-2 Cu1-xTax合金薄膜電性之分析 41
3-3 Si/Cu1-xTax/Cu結合強度分析 44
3-4 Si/Cu1-xTax/Cu界面反應 46
3-5 Si/Cu1-xTax/Cu電性之分析 50
3-6 Si/Cu1-xTax/Cu擴散行為之分析 54
第肆章 電鍍Cu之性質 60
4-1 電鍍參數與電鍍Cu厚度及電性之關係 63
4-2 電鍍參數對電鍍Cu表面型態之影響 66
4-3 電鍍參數對電鍍Cu微結構之影響 74
4-4 水在電鍍Cu表面之潤濕行為 78
4-5 塗佈助熔劑之銲錫在電鍍Cu表面之潤濕行為研究 81
4-6 同時塗佈助熔劑在銲錫及電鍍Cu表面之潤濕行為研究 85
4-7 降低重流溫度對潤濕行為之影響 94
第伍章 銲錫隆點界面反應及可靠度測試分析 101
5-1 銲錫隆點多次重流之界面反應與可靠度測試分析 102
5-2 銲錫隆點高溫時效之界面反應與可靠度測試分析 108
第陸章 結論 123
參考文獻 125
自述 140
1. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chapter 1
2. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, 1997, Volume 1, p.323
3. L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop., 5 (1969) 239
4. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, 1997, Volume 1, p.337
5. H. Reichl, A. Schubert, and M. Topper, “Relibility of chip and size packages”, Microelectronics Reliability, 40 (2000) 1243
6. J. Baliga, “Flip-chip packaging: prepare for the ramp-up”, Semiconductor International, 21 (1998) 87
7. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 3
8. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 15
9. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 6
10. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 9
11. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 1
12. M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter 7
13. P. E. Hovsepian, D. B. Lexis, and W. D. Munz, “Recent progress in large scale manufacturing of multilayer/superlattice hard coatings”, Surf. Coat. Technol., 133 (2000) 166
14. K. L. Lin and Y. T. Liu, “Manufacturing of solder bumps with Cu/Ta/Cu as under bump metallurgy”, IEEE Trans. Adv. Packaging, 22 (1999) 580
15. C. J. Chen and K. L. Lin, “Electroless Ni-Cu-P barrier between Si/Ti/Al pad and Sn-Pb flip-chip solder bumps”, IEEE Trans. Comp. Pack. Technol., 24 (2001) 691
16. K. L. Lin, Y. L. Chang, C. C. Huang, F. I. Li, and J. C. Hsu, “Microstructure evolution of electroless Ni-P and Ni-Cu-P deposits on Cu in the presence of additives”, Appl. Surf. Sci., 181 (2001) 166
17. K. L. Lin and Y. C. Liu, “Manufacturing of Cu/Electroless Nickel/Sn-Pb flip chip solder bumps”, IEEE Trans. Adv. Pack., 22 (1999) 575.
18. H. A. Sorkhabi, H. Dolati, N. P. Ahmadi, and J. Manzoori, “Electroless deposition of Ni-Cu-P alloy and study of the influences of some parameters on the properties of deposits”, Appl. Surf. Sci., 185 (2002) 155
19. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chap. 5
20. E. P. Wood and K. L. Nimmo, ”In search of new lead-free electronic solders”, J. Electron. Mater., 23 (1994) 709
21. C. M. Miller, I. E. Anderson, and J. F. Smith, “A viable tin-lead solder substitute: Sn-Ag-Cu”, J. Electron. Mater., 23 (1994) 595
22. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New lead-free, Sn-Zn-In solder alloys”, J. Electron. Mater., 23 (1994) 687
23. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng., 27 (2000) 95
24. Y. Fujiwara, H. Enomoto, T. Nogao, and H. Hoshika, “Composite plating of Sn-Ag alloys for Pb-free soldering”, Surf. Coat. Technol., 169 (2003) 100
25. K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tago, and M. Bonkohara, “Ultra-high-density interconnection technology of three-dimensional packing”, Microelectronics Reliability, 43 (2003) 1267
26. Z. I. Vitez, “Laser processing for microelectronics packing applications”, Microelectronics Reliability, 41 (2001) 563
27. R. S. Nowicki and M. A. Nicolet, “General aspects of barrier layers for very-large-scale integration applications”, Thin Solid Films, 96 (1982) 317
28. S. Q. Wang, S. Suthar, C. Hoeflich, and B. B. Burrow, “Diffusion barrier properties of TiW between Si and Cu”, J. Appl. Phys., 73 (1993) 2301
29. J. O. Olowolafe, J. Li, J. W. Mayer, and E. G. Colgan, “Effects of oxygen in TiNx on the diffusion of Cu in Cu/TiN/Al and Cu/TiNx/Si structures”, Appl. Phys. Lett., 58 (1991) 469
30. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, and J. J. Kim, “Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure”, Appl. Phys. Lett., 69 (1996) 4182
31. H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metal for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W)”, Appl. Phy. Lett., 64 (1994) 1511
32. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions”, J. Appl. Phys., 71 (1992) 5433
33. M. Takeyama, A. Noya, T. Sase, A. Ohta, and K. Sasaki, “Properties of TaNx films as diffusion barriers in the thermally stable Cu/Si contact systems”, J. Vac. Sci. Technol., B 14 (1996) 674
34. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M. A. Nicolet, “Trantalum-based diffusion barriers in Si/Cu VLSI metallizations”, J. Appl. Phys., 70 (1991) 1369
35. K. Holloway and P. M. Fryer, “Tantalum as a diffusion barrier between copper and silicon”, Appl. Phys. Lett., 57 (1990) 1736
36. S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar, and K. B. Kim, “Reactively sputtered TiN as a diffusion barrier between Cu and Si”, J. Appl. Phys., 68 (1990) 5176
37. K. W. Kwon, H. J. Lee, and R. Sinclair, “Solid-state amorphization at tetragonal-Ta/Cu interfaces”, Appl. Phys. Lett., 75 (1999) 935
38. C. Ryu, H. Lee, K. W. Kwon, A. L. S. Loke, and S. S. Wong, “Barriers for copper interconnections”, Solid State Technology, 42 (1999) 53
39. J. H. Kim, H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, ”Phases in sputter-deposited Cu-Ta alloys”, Mater. Sci. Eng., A156 (1992) 211
40. M. Stavrew, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, “Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films”, Thin Solid Films, 307 (1997) 79
41. R. Hoogeveen, M. Moske. H. Geisler, and K. Samwer, “Texture and phase transformation of sputter-deposited metastable Ta films and Ta/Cu multilayers”, Thin Solid Films, 275 (1996) 203
42. P. J. Kelly and R. D. Arnell, “The influence of deposition parameters on the structure of Al, Zr and W coatings deposited by closed-field unbalanced magnetron sputtering”, Surf. Coat. Technol., 86 (1996) 425
43. J. A. Thornton, “Influence of allaratus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., 11 (1974) 666
44. R. M. Rose, L. A. Shepard, and J. Wulff, Structure and Properties of Materials: Electronic Properties, Wiley Eastern Pvt. Ltd., New Delhi, 1968, Volume 4, p.82
45. M. H. Read and C. Altman, “A new structure in tantalum thin films”, Appl. Phys. Lett., 7 (1965) 51
46. G. S. Chen and S. T. Chen, “Diffusion barrier properties of single- and multilayered quasi-amorphous tantalum nitride thin film against copper penetration”, J. Appl. Phys., 87 (2000) 8473
47. J. K. Solberg, “The crystal structure of η-Cu3Si precipitates in silicon”, Acta Cryst., A 34 (1978) 684
48. J. M. E. Harper, A. Charai, L. Stolt, F. M. d’Heurle, and P. M. Fryer, “Room-temperature oxidation of silicon catalyzed by Cu3Si”, Appl. Phys. Lett., 56 (1990) 2519
49.T. Ohba, “Advanced multilevel metallization technology”, Appl. Surf. Sci., 91 (1995) 1
50. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, 1997, Volume 1, p.337
51. J. You, J. Kang, D. Kim, J. J. Pak, and C. S. Kang, “Copper metallization for crystalline Si solar cells”, Solar Energy Materials and Solar Cells, 79 (2003) 339
52. J. W. Nah and K. W. Paik, “Investigation of flip chip under bump metallization systems of Cu pads”, IEEE Transactions on Components and Packaging Technologies, 25 (2002) 1521
53. C. K. Hu and J. M. E. Harper, Int. Symposium on VLSI Technology and Applications, Taipei, Taiwan, ROC, June 3-5, 1997, p.18
54. D. Gupta, “Diffusion in several materials relevant to Cu interconnection technology”, Mater. Chem. Phys., 41, (1995) 199
55. D. B. Knorr and D. P. Tracy, “A review of microstructure in vapor deposited copper thin films”, Mater. Chem. Phys., 41 (1995) 206
56. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Develop., 42 (1998) 567
57. V. M. Kozlov and L. P. Bicelli, “Texture formation of electrodeposited fcc metals”, Mater. Chem. Phys., 77 (2002) 289
58. S. C. Chang, J. M. Shieh, B. T. Dai, M. S. Feng, and Y. H. Li, “The effect of plating current densities on self-annealing behabiors of electroplated copper films”, J. Electrochem. Soc., 149 (2002) G535
59. W. H. Li, J. H. Ye, and S. F. Y. Li, “Electrochemical deposition of copper on patterned Cu/Ta(N)/SiO2 surfaces for super filling of sub-micron features”, J. Appl. Electrochem., 31 (2001) 1395
60. M. K. Lee, J. J. Wang, and H. D. Wang, “Deposition of copper films on silicon form cupric sulfate and hydrofluoric acid”, J. Electrochem. Soc., 144 (1997) 1777
61. Y. Fukunaka, H. Doi, and Y. Kondo, “Structural variation of electrodeposited copper film with the addition of an excess amount of H2SO4”, J. Electrochem. Soc., 137 (1990) 88
62. M. F. Ahmed, B. S. Sheshadri, and F. Pushpanaden, “Electrocrystallization of lead on copper single crystal planes: some effects of superimposed “a.c.” on “d.c.””, Electrodep. Surf. Treat., 3 (1975) 65
63. D. V. Heerden, E. Zolotoyabko, and D. Shechtman, “Microstructure and strain in electrodeposited Cu/Ni multilayers”, J. Mater. Res., 11 (1996) 2825
64. K. M. Latt, K. Lee, T. Osipowicz, and Y. K. Lee, “Properties of electroplated copper thin film and its interfacial reactions in the EPCu/IMPCu/IMPTaN/SiO2/Si multilayer structure”, Mater. Sci. Eng. B: Solid State Adv. Technol., 83 (2001) 1
65. N. Eustathopolous, “Dynamics of wetting in reactive metal/ceramic systems”, Acta Mater., 46, (1998) 2319
66. A. Meier, J. A. Javernick, and G. R. Edwards, “Ceramic-metal interfaces and the spreading of reactive liquids”, JOM, 51 (1999) 44
67. R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988
68. F. G. Yost, “Kinetics of reactive wetting”, Scripta Mater., 42 (2000) 801
69. X. B. Zhou amd J. T. M. D. Hosson, “Reactive wetting of liquid metals on ceramic substrates”, Acta Mater., 44 (1996) 421
70. Y. Y. Chen, J. G. Duh, and B. S. Chiou, “The effect of substrate surface roughness on the wettability of Sn-Bi solders”, J. Mater. Sci.: Material in Electronics, 11 (2000) 279
71. S. Kalogeropoulou, C. Rado, and N. Eustathopoulos, “Mechanisms of reactive wetting: the wetting to non-wetting case”, Scripta Mater., 41 (1999) 723
72. N. Eustathopoulos, “Dynamics of wetting in reactive metal/ceramic systems”, Acta Mater., 46 (1998) 2319
73. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng., 27 (2000) 95
74. K. N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng., R 34 (2001) 1
75. H. K. Kim, H. K. Liou, and K. N. Tu, “Morphology of instability of the wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu”, J. Mater. Res., 10 (1995) 497
76. X. H. Wang and H. Condrad, “Kinetics of wetting Ag and Cu substrates by molten 60Sn40Pb”, Metall. Mater. Trans., A 26 (1995) 459
77. P. G. Kim and K. N. Tu, “Fast dissolution and soldering reactions on Au foils”, Mater. Chem. Phys., 53 (1998) 165
78. X. Ma, F. Wang, Y. Qian, and F. Yoshida, “Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface”, Mater. Lett., 57 (2003) 3361
79. S. W. Yoon, W. K. Choi, and H. M. Lee, “Calculation of surface tension and wetting properties of Sn-based solder alloys”, Scripta Mater., 40 (1999) 297
80. H. K. Kim, H. K. Liou, and K. N. Tu, “Mrophology of instability of the wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn and Cu”, J. Mater. Res., 10 (1995) 497
81. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, Wiley, New York, 1998, p.181
82. M. E. Gross, C. Lingk, T. Siegrist, E. Coleman, W. L. Brown, K. Ueno, Y. Tsuchiya, N. Itoh, T. Ritzdorf, J. Turner, K. Gibbons, E. Klawuhn, M. Biberger, W. Y. C. Lai, J. F. Miner, G. Wu., and F. Zhang, “Microstructure and texture of electroplated copper in damascene strcutures”, Mater. Res. Soc., 514 (1998) 293
83. W. P. Davey, Phys. Rev., 25 (1925) 753
84. W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang, and C. L. Cheng, “Copper electroplating for future ultralarge scale integration interconnection”, J. Vac. Sci. Technol., A18 (2000) 656
85. J. O’M. Bockris and G. A. Razumney, Fundamental Ascepts of electrocrystallization, Plenum Press, New York, 1967, p.91
86. J. W. Dini, Electrodeposition, Noyes, New Jersey, 1993, p.162
87. J. Amblard, I. Epelboin, M. Froment, and G. Maurin, “Inhibition and nickel electrocrystallization”, J. Appl. Electrochem., 9 (1979) 233
88. J. M. E. Harper, C. Cabral, Jr. P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, and C. K. Hu, “Mechanisms for microstructure evolution in electroplated copper thin films near room temperature”, J. Appl. Phys., 86 (1999) 2516
89. H. Qiu, F. Wang, P. Wu, L. Pan, and T. Tian, “Structural and electrical properties of Cu films deposited on glass by DC magnetron sputtering”, Vacuum, 66 (2002) 447
90. J. O’M. Bockris and G. A. Razumney, Fundamental Aspects of Electrocrystallization, Plenum Press, New York, USA, 1967, Chapter 9
91. T. Young, Phil. Trans. R. Soc., 95 (1805) 65
92. R. J. Good, “A thermodynamic derivation of Wenzel’s modigication of Young’s equation for contact angles; together with a theory of hysteresis”, J. Am. Chem. Soc., 74 (1952) 5041
93. G. Wolansky and A. Marmur, “Apparent contact angles on rough surfaces: the Wenzel equation revisited”, Colloids and Surfaces, A156 (1999) 381
94. G. Palasantzas and J. T. M. De Hosson, “Wetting on rough surfaces”, Acta Mater., 49 (2001) 3533
95. J. Bico, U. Thiele, and D. Quere, “Wetting of textured surfaces”, Colloids and Surfaces, 206 (2002) 41
96. F. G. Yost, R. R. Rye, and J. A. Mann, JR., “Solder wetting kinetics in narrow v-grooves”, Acta Mater., 45 (1997) 5337
97. N. Eustathopulos, “Dynamic of wetting in reactive metal/ceramic systems”, Acta Mater., 46 (1998) 2319
98. A. J. Sunwoo, J. M. Morris, and G. K. Lucey, “The growth of Cu-Sn intermetallics at a pretinned copper-solder interface”, Metall. Trans. A, 23A (1992) 1323
99. D. Grivas, D. Frear, L. Quan, and J. Morris, “The formation of Cu3Sn intermetallic on the reaction of Cu with 95-Pb-5Sn solder”, J. Electron. Mater., 15 (1986) 355
100. H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu”, Appl. Phys. Lett., 66 (1995) 2337
101. H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Phys. Rev. B, 53 (1996) 16027
102. A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys., 80 (1996) 2774
103. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting reaction versus solid state aging of eutectic SnPb on Cu”, J. Appl. Phys., 89 (2001) 4843
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔