跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王勢輝
研究生(外文):Shin-Hui Wang
論文名稱:氮化鋯薄膜之製備及作為閘極電極之特性研究
論文名稱(外文):Preparation of Zr-N Thin Film and Its Characteristics as Gate Electrode
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):J. S. Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:121
中文關鍵詞:氮化鋯閘極電極
外文關鍵詞:gate electrodeZrN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
  本研究利用反應式磁控濺鍍法製備不同成分之氮化鋯薄膜。實驗結果主要分為四個部分:第一部分針對施加不同基板偏壓(0 ~ -200 V)下所鍍製氮化鋯薄膜的特性作為探討。第二部分則針對通入不同氮氣流量比例(0.5% ~ 24 %)下所製備氮化鋯薄膜的特性作為探討。第三部分研究先前所鍍製之氮化鋯薄膜經各種退火溫度後(500, 700, 900oC)之材料特性的比較。第四部分則針對通入氮氣流量比例為0.5 %及2 %下所製備之氮化鋯薄膜,沈積於不同厚度之二氧化矽上,並藉由量測C-V曲線,計算其功函數值,並探討其於MOSEFT結構中之閘極電極層應用之可行性。
  本研究使用拉賽福背向散射分析進行氮化鋯薄膜之密度及成分分析、以θ-2θ X光繞射分析與X低掠角繞射分析以及穿透式電子顯微鏡繞射圖進行氮化鋯薄膜之晶體結構鑑定、以歐傑電子能譜儀觀察氮化鋯薄膜在試片表面以及其與二氧化矽界面的元素成分分佈狀態、以X光光電子能譜儀分析其化學鍵結、以掃瞄式電子顯微鏡觀察薄膜表面型態、穿透式電子顯微鏡觀察其顯微結構,並使用四點探針量測其片電阻值及α-step量測膜厚並計算薄膜電阻率,探討濺鍍製程與氮化鋯薄膜結構之間關聯性。以橢圓偏光儀進行介電薄膜厚度量測。最後使用LCR meter (HP 4284)對氮化鋯為閘極電極之MOS結構進行C-V電性量測。
  實驗結果第一部份顯示,固定通入氮氣流量比例為2 %,在施加不同基板偏壓下,所濺鍍的薄膜,經XRD分析結果顯示,其皆具有氮化鋯結構。未施加基板偏壓下,薄膜內部具有相當的氧含量及高電阻率。隨著濺鍍時基板負偏壓的增加,氮化鋯薄膜內部氧含量降低,氮化鋯薄膜之(111)ZrN從優取向也隨之增強且薄膜電阻率明顯的下降。當施加基板偏壓為-200 V時,薄膜得到最低的電阻率為67 μΩ-cm。
  第二部分結果顯示,固定施加-200 V基板偏壓,改變氮氣流量比例0.5 % ~ 24 %,以XRD分析所鍍製的薄膜,結果發現皆具有氮化鋯結構。濺鍍時隨著通入的氮氣流量比例增加,氮化鋯薄膜內氮原子含量將隨之增加。薄膜電阻率一開始降低(0.5 % ~ 2 %),之後隨著所通入的氮氣流量比例(2 % ~ 24 %)增加而升高。當通入氮氣流量比例為2 %時,所鍍製之氮化鋯薄膜獲得最佳的薄膜電阻率,與最佳化的晶粒大小、(111)ZrN從優取向、密度及計量比。
  第三部分結果顯示,通入固定氮氣流量比例為2 %,未施加基板偏壓下所鍍製之氮化鋯薄膜,在700 oC退火後,以XRD分析結果發現即有氧化鋯結晶相生成,並造成薄膜電阻率上升。隨著所施加基板負偏壓增大至-200 V,經高溫退火後,氧原子不易進入薄膜內部,薄膜之電阻率不因退火而有太大改變。另一方面,在固定施加-200 V基板偏壓,通入低氮氣流量比例(0.5 %)下,所鍍製之氮化鋯薄膜,其經700 oC退火後,即有氧化鋯結晶相生成,導致電阻率上升。在適當氮氣流量比例下(2 %),所鍍製之氮化鋯薄膜符合計量比且不含氧原子,經由500~900 oC退火後,其結晶結構並無改變,薄膜之電阻率也呈現穩定的值,此時薄膜具有最優良的熱穩定性。在通入更高氮氣流量(N2 flow = 16%, 24%)下,所鍍製之氮化鋯薄膜,發現在經過500~900 oC退火後,其結晶結構並無太大改變。然而,其薄膜經900 oC退火後,其電阻率有下降的趨勢。
  第四部分結果顯示,固定施加-200 V基板偏壓下,通入氮氣流量比例為0.5 %及2%,所鍍製之氮化鋯材料,經ΦM = ΦS + Vfb + Q/C計算得到其功函數值分別為5.3±0.03 V及4.12±0.03 V。由計算結果可知0.5%-N2之氮化鋯閘極電極較適用於PMOS上,而2%-N2之氮化鋯材料較適用於NMOS上。
  In this investigation, thin films of ZrNx were prepared by reactive RF magnetron sputtering from a Zr target in an Ar+N2 atmosphere, and the experiment was divided into four sections. In the first section, the material characteristics of ZrNx thin films deposited with various substrate bias (zero to -200 V) were investigated.   In the second section, the properties of ZrNx thin films deposited at various nitrogen flow ratio (0.5 % to 24 %) were investigated. In the third section, the material characteristics of the ZrNx thin films with previously deposited condition were contrasted after annealing in different temperatures (500 oC, 700 oC, 900 oC). In the final section, thin films of ZrNx with N2 flow ratio of 0.5 % and 2 % were deposited on SiO2 of various thickness, C-V measurements were used to calculate the work function values, and the feasibility of employing ZrNx thin films as gate electrode is evaluated.
  In this experiment, the composition and density of ZrNx thin films were determined by Rutherford backscattering spectrometry (RBS). The crystallographic structure of the ZrNx thin films were characterized by θ-2θ X-ray diffraction (θ-2θ XRD), glancing incident angle X-ray diffraction (GIAXRD), and transmission electron microscopy (TEM) diffraction. The composition depth profiles and chemical bondings of ZrNx thin films were determined by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The morphology of ZrNx thin films were be observed by scanning electron microscopy (SEM) and the microstructure of ZrNx thin films were observed by transmission electron microscopy (TEM). The resistivity of ZrNx thin films were calculated from the sheet resistance measured by a four-point probe and the film thickness was measured by α-step profilometer. Finally, the C-V characteristics of MOS structure were measured by LCR meter (HP 4284).
  From the first section, with 2% of nitrogen flow ratio, all ZrNx films exhibit the cubic ZrN crystal phase, regardless of the magnitude of substrate bias. The zero-biased ZrNx film contains substantial oxygen and shows high resistivity. Once a negative bias is applied to the substrate, the incorporated oxygen in ZrNx films can be reduced and the the (111)ZrN preferred orientation is enhanced. Resistivity as low as 67 μΩ-cm can be attained with –200 V of substrate bias.
  In the second section, at –200 V of substrate bias, all films show the ZrN phase when the nitrogen flow ratio varies from 0.5 % to 24 %. However, the nitrogen content in ZrNx films increases continuously with the increasing nitrogen flow ratio. Resistivity of ZrNx films first decreases (0.5 % ~ 2 %), and then increases with increasing nitrogen flow ratio (2 % ~ 24 %). The best resistivity is obtained for the ZrNx film sputtered with 2% of nitrogen flow ratio and this sample exhibits the optimum grain size, (111)ZrN prefer orientation, density and stoichiometry.
  In the third section, the GIAXRD results reveal that ZrNx thin film with 2 % nitrogen flow ratio at zero bias had been transformed to ZrO2 crystal phase after annealing at 700 oC, resulting in the increase of the film resistivity. At –200 V substrate bias, the resistivity of ZrN films was not significantly changed after annealing.
  At –200 V substrate bias, the ZrNx thin film deposited with 0.5 % of nitrogen flow ratio formed ZrO2 crystal phase after annealing at 700 oC. With 2 % nitrogen flow ratio, the film still exhibit the cubic ZrN crystal phase and the resistivity exhibit stable values after annealing at 500 ~ 900 oC. With high nitrogen flow ratio(16 %, 24 %), the crystal phase of the films were not significantly changed. However, the resistivity of the film was decreased after annealing at 900 oC.
  In the final section, the ZrNx films was sputtered at 0.5 % and 2 % of nitrogen flow ratio with a constant substrate bias of -200 V, and the work function of ZrN films were 5.3±0.03 V and 4.12±0.03 V, respectively. According to the work function values, the ZrNx gate electrode deposited with 0.5% nitrogen flow ratio is suitable for application in PMOS, and the ZrNx films deposited with 2% nitrogen flow ratio is suitable for application in NMOS.
第1章 前言與研究目的 ...........................................1
1-1 前言 .......................................................1
1-2 研究目的 ...................................................4
第2章 理論基礎 .................................................5
2-1 氮化鋯基本性質與相關文獻回顧 ...............................5
2-2 MOSEFT之開關效應 ..........................................10
2-3 金屬閘極功函數值之要求 ....................................13
2-4 Φm之計算 .................................................18
第3章 實驗方法與步驟 ..........................................22
3-1 實驗材料 ..................................................22
3-2 實驗設備 ..................................................23
3-2.1 濺鍍系統 (Sputtering System) ............................23
3-2.2 真空退火系統 (Vacuum Annealing System) ..................23
3-2.3 乾式熱氧化系統 (Dry oxidation System) ...................23
3-3 實驗流程 ..................................................24
3-3.1 氮化鋯薄膜製程 ..........................................25
3-3.2 MOS (Metal Oxide Semiconductor)製程 .....................28
3-4 薄膜性質分析 ..............................................30
3-4.1 薄膜厚度量測及電阻率分析 ................................30
3-4.2 θ-2θ X光繞射 (θ-2θ X-ray Diffraction;θ-2θXRD) ....31
3-4.3 低掠角入射X光繞射 (Glancing incident angle XRD ; GIAXRD) 32
3-4.4 拉賽福背向散射儀 (Rutherford backscattering spectrometry;RBS) ..........................................................33
3-4.5 歐傑能譜分析儀 (Auger electron spectroscopy;AES) .......34
3-4.6 化學分析電子光譜儀 (Electron spectroscopy for chemical analysis;ESCA) ...............................................................35
3-4.7 掃瞄式電子顯微鏡 (Scanning electron microscopy;SEM) ....36
3-4.8 穿透式電子顯微鏡 (Transmission electron microscopy;TEM) 37
第4章 結果與討論 ..............................................38
4-1 不同基板偏壓下初鍍氮化鋯薄膜性質 ..........................39
4-1.1 電阻率量測 ..............................................39
4-1.2 成份與密度分析 ..........................................41
4-1.3 晶體結構分析 ............................................46
4-1.4 XPS表面化學鍵結分析 .....................................53
4-1.5 表面型態分析 ............................................56
4-1.6 顯微結構分析 ............................................58
4-2 不同氮氣流量比例對氮化鋯薄膜性質的探討 ....................61
4-2.1 電阻率量測 ..............................................61
4-2.2 成份定量分析 ............................................63
4-2.3 晶體結構分析 ............................................71
4-2.4 XPS表面化學鍵結分析 .....................................77
4-2.5 表面型態分析 ............................................79
4-2.6 顯微結構分析 ............................................81
4-3 退火後氮化鋯的薄膜性質 ....................................84
4-3.1 薄膜之電阻率量測及晶體結構分析 ..........................84
4-3.2 AES縱深元素分析 .........................................94
4-3.3 XPS鍵結分析 .............................................97
4-3.4 表面型態分析 ...........................................100
4-3.5 顯微結構分析 ...........................................103
4-4 ZrNx作為閘極電極之探討 ...................................108
4-4.1 C-V量測結果 ............................................108
4-4.2 氮化鋯閘極電極材料於MOSEFT之應用 .......................112
第5章 結論 ...................................................114
第6章 參考文獻 ...............................................116
1. International Technology Roadmap for Semiconductors 2003
2. A. Martin, P. Osullivan, and A. Mathewson, “Dielectric reliability measurement methods: A review”, Microelectron. Reliabity 38, 37 (1998)
3. C. P. Liu, Y. Ma, H. Luftman, and S. J. Hillenius, “Preventing boron peretration through -25Å gate oxides with nitrogen implant in the Si substrates”, IEEE Electron Device Letter 18, 212 (1997)
4. H.-S. Kim, D.-H. Ko, D.-L. Bae, K. Fujihara, and H.-K. Kang,“The Formation of Ti-Polycide Gate Structure with High Thermal Stability Using Chemical-Mechanical Polishing (CMP) Planarization Technology”, IEEE Electron Device Letter 20, 86 (1999)
5. P. Xuan and J. Bokor, “Intvestigation of NiSi and TiSi as CMOS Gate Materials”, IEEE Electron Device Letter 24, 634 (2003)
6. B. H. Lee, D. K. Sohn, J.-S. Park, C. H. Han, Y.-J. Huh, J. S. Byun, and J. J. Kim, “In-situ Barrier Formation for High Reliable W/barrier/poly-Si Gate Using Denudation of WNx on Polycrystalline Si”, IEDM Technology Digest 385 (1998)
7. H. Wakabayashi, T. Yamamoto, K. Yoshida, E. Soda, K.-I. Tokunaga, T. Mogami, and T. Kunio, “An Ultra-Low Resistance and Thermally Stable W/pn-Ploy-Si Gate CMOS Technology using Si/TiN Buffer Layer”, IEDM Technology Digest 393 (1998)
8. D. A. Buchanan, F. R. McFeely, and J. J. Yurkas, “Fabrication of midgap metal gates compatible with ultrathin dielectrics”, Applied Physics Letters, 73 1676 (1998)
9. D.-G. Park, H.-J. Cho, K.-Y. Lim, T.-H. Cha, I.-S. Yeo, and J. W. Park, “Effects of TiN Deposition on the Characteristics of W/TiN/SiO2/Si Metal Oxide Semiconductor Capacitors”, Journal of The Electrochemical Society 148, 189 (2001)
10. C. Ren, H. Y. Yu, J. F. Kang, Y. T. Hou, M.-F. Li, W. D. Wang, D. S. H. Chan, and D.-L. Kwong, “Fermi-Level Pinning Induced Thermal Instability in the Effective Work Function of TaN in TaN/SiO2 Gate Stack”, IEEE Electron Device Letter 25, 123 (2004)
11. H. Y. Yu, J. F. Kang, C. Ren, J. D. Chen, Y. T. Hou, C. Shen, M. F. Li, D. S. H. Chan, K. L. Bera, C. H. Tung, and D.-L. Kwong, “Robust High-Quality HfN-HfO2 Gate Stack for Advanced MOS Device Application”, IEEE Electron Device Letter, 25, 70 (2004).
12. D. R. Lide, editor-in-chief, “CRC Handbook of chemistry and Physics”, 74th ed., CRC Press, Boca Raton, 1993
13. J. Emsley, “The Elements”, Oxford University Press, New York, 1989
14. I. Barin, “Thermochemical data of pure substance”, 3rd ed., VCH, New York, 1995
15. C. C. Wang, S. A. Akbar, W. Chen, V. D. Patton, “Review Electrical properties of high-temperature oxides borides, carbides, and nitrides”, Journal of Material Science 30, 1672 (1995)
16. T. B. Massalski, editor-in-chief, “Binary Phase Diagrams”, 2nd ed., ASM International, Ohio, 1990
17. W. Y. Ching, Y.-N. Xu, and L. Ouyang, “Electron and dielectric properties of insulating Zr3N4”, Physical Review B 66, 235106 (2002)
18. H. Wendel and H. Suhr, “Thin zirconium nitride films prepared by plasma-enhanced CVD”, Applied Physics A 54, 389 (1992)
19. M. Nagao, Y. Fujimori, Y. Gotoh, H. Tsuji, and J. Ishikawa, “Emission characteristics of ZrN thin film field emitter array fabricated by ion beam assisted deposition technique”, Journal of Vacuum Science and Technology B 16, 829 (1998)
20. C.-H. Ma, J.-H. Huang, and H. Chen, “A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition”, Surface and Coatings Technology 133-134, 294 (2000)
21. W. Ensinger, K. Volz, and M. Kiuchi, “Ion beam-assisted deposition of nitrides of the 4th group of transition metals”, Surface and Coatings Technology 128-129, 81 (2000)
22. H. Spillmann, P. R.Willmott, M. Morstein, and P. J. Uggowitzer, “ZrN, ZrxAlyN and ZrxGayN thin films – novel materials for hard coatings grown using pulsed laser deposition”, Applied Physics A 73, 441 (2001)
23. W. D. Sproul, “Reactively sputtered nitrides and carbides of titanium, zirconium, and hafnium”, Journal of Vacuum Science and Technology A 4, 2874 (1986)
24. E. Budke, J. K. Hesse, H. Maidhof, H. Schussler, “Decorative hard coatings with improved corrosion resistance”, Surface and Coatings Technology 112, 108 (1999)
25. M. B. Takeyama, T. Itoi, E. Aoyagi, and A. Noya, “High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems”, Applied Surface Science 190, 450 (2002)
26. H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, and J.-C. Parlebas, “Investigations on non-stoichiometric zirconium nitrides”, Applied Surface science 200, 231 (2002)
27. S. Inoue, K. Tominaga, R. P. Howson, and K. Kusaka, “Effects of nitrogen pressure and ion flux on the properties of direct current reactive magnetron sputtered Zr–N films”, Journal of Vacuum Science and Technology A 13, 2808 (1995)
28. C.-P. Liu and H.-G. Yang, “Systematic study of the evolution of texture and electrical properties of ZrN thin films by reactive DC magnetron sputtering”, Thin Solid Films 444, 111 (2003)
29. D. Pilloud , A.S. Dehlinger , J.F. Pierson , A. Roman, and L. Pichon, “Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics”, Surface and Coatings Technology 174-175, 338 (2003)
30. M. D. Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, and M. Hecq “Study of ZrN layers deposited by reactive magnetron sputtering”, Surface and Coatings Technology 174 –175, 240 (2003)
31. J. Vetter and R. Rochotzki, “Tribological behaviour and mechanical properties of physical-vapour-deposited hard coatings: TiNx, ZrNx, TiCx, TiCx/i-C”, Thin Solid Films 192, 253 (1990)
32. H. N. Al-Shareef, X. Chen, D. J. Lichtenwalner, and A. I. Kingon,”Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications”, Thin Solid Films 280, 265 (1996)
33. J. A. Sue and T. P. Chang, “Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures”, Surface and Coatings Technology 76-77, 61 (1995)
34. S. Niyomsoan, W. Grant, D.L. Olson, and B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films”, Thin Solid Films 415, 187 (2002)
35. T. Yotsuya, M. Yoshitake and T. Kodama, “Low-temperature thermometer using sputtered ZrNx thin film”, Cryogenics 37, 817 (1998)
36. A. Cassinses, M. Iavarone, and R. Vaglio, “Transport properties of ZrN superconducting films”, Physical Review B 62, 13915 (2000)
37. D. A. Neamen, “Semiconductor Physics & Device”, 2nd ed., Irwin, McGraw-Hill, 1997
38. W. M. Warner, “The work function difference of the MOS-System with aluminum field plates and polycrystalline silicon field plates”, Solid-State Electronics 17, 769 (1974)
39. R. R. Razouk and B. E. Deal, “Hydrogen anneal effects on metal-semiconductor work function difference”, Journal of The Electrochemical Society 129, 806 (1982)
40. A. I. Akinwande and J. D. Plummer, “Process dependence of the metal semiconductor work function difference”, Journal of The Electrochemical Society 134, 2297 (1987)
41. W. K. Chu, J. W. Myer, and M.-A. Nicolet, “Backscattering Spectrometry”, Academic Press, New York, 1978
42. M. Ohing, “The Materials Science of Thin Films”, Academic Press, San Diego, 1992, pp.129-131. And references therein
43. J. Pelleg, L. Z. Zevin, and S. Lungo, “Reactive-sputter-deposition TiN films on glass substrates”, Thin Solid Films 197, 117 (1991)
44. U. C. Oh and J. H. Je, “Effects of strain energy on the preferred orientation of TiN thin films”, Journal of Applied Physics 74, 1962 (1993)
45. B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, 3rd ed., Prentice Hall, New Jersey, 2001, p.170
46. H. Höchst, R. D. Bringans, P. Steiner and Th. Wolf, “Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN”, Physical Review B 25, 7183 (1982)
47. J. F. Moulder, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electrons, Minnesota, 1995, p.108-109
48. D. Majumdar and D. Chatterjee, “X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia”, Journal of Applied Physics 70, 988 (1991).
49. M. Ohing, “The Materials Science of Thin Films”, Academic Press, San Diego, 1992, pp.126-128. And references therein
50. C. R. Aita, M. D.Wiggins, R. Whig, C. M. Scanlan, and M. Gajdardziska-Josifovska, “Birefringence study of the freezing mechanism of lanthanum-modified lead
zirconate titanate relaxor ferroelectrics”, Journal of Appllied Physics 79, 1176 (2003)
51. K. Koski, J. Holsa, P. Juliet, “Properties of zirconium oxide thin films deposited by pulsed reactive magnetron sputtering”, Surface and Coatings Technology 120-121, 303 (1999)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top