(3.227.235.183) 您好!臺灣時間:2021/04/18 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪慧慈
研究生(外文):Hui-Tzu Hung
論文名稱:錫鋅系無鉛銲錫與金屬化銅基材之接合行為與界面反應
論文名稱(外文):Adhesive Behavior and Interfacial Reaction between Sn-Zn Based Solders and Metallized Cu Substrates
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:104
中文關鍵詞:無電鍍鎳界面反應無鉛銲錫
外文關鍵詞:interfacial reactionLead-Free solder
相關次數:
  • 被引用被引用:4
  • 點閱點閱:374
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:2
  本實驗係研究錫鋅系無鉛銲錫合金與金屬化銅基材之界面反應與接合行為;並探討錫鋅系合金之顯微組織與熱性質。利用潤濕天平試驗分析錫鋅系銲錫與不同基材間之潤濕性與界面反應;在重流製程後,利用剪力強度測試了解錫鋅系合金與BGA基板之接合行為並觀察其界面反應。所探討之錫鋅系銲錫合金為Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga和Sn-9Zn;使用之金屬化銅基材為Cu/Ni-P、Cu/Ni-P/Au、Cu/Au與BGA(Cu/Ni/Au)基板。
  Sn-9Zn共晶組織為針狀富鋅相與β-Sn基地相共存之結構,而 Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫中除了富鋅相與錫基地兩相共存外,還有銀鋅化合物的析出。Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫之熔點為196.4℃.
  由潤濕天平試驗結果可知,錫鋅系銲錫合金易氧化而使得基材上之披覆層粗糙不光滑。在Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga與Cu/Ni-P/Au、Cu/Au基板系統中,浸鍍溫度達250℃以上時才具有較佳之可銲錫性;但是其潤濕時間皆大於1秒,可知Sn-8.55Zn-0.5Ag-0.1Al0.5Ga合金與金鍍層之可銲錫性有待提升。
  Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫與Cu/Ni-P/Au基板於250℃進行潤濕試驗,在界面生成AuZn3和Al2Au金屬間化合物,於150℃時效處理1000小時後界面化合物(Au.Ag)Zn3、AuZnX和Al2Au金屬間化合物,而Ni-P鍍層不參與界面反應。但Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫與Cu/Au基板於250℃潤濕反應後,由界面分析結果得知,除了Au-Al-Zn反應層外,靠近銅基材處有Cu5Zn8化合物,顯示仍須有Ni-P鍍層以做為有效之擴散障礙層。
  經由剪力測試結果得知,Sn-9Zn銲錫球與BGA基板間之接合強度較Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫系統之接合強度大;而隨著時效時間增加剪力強度逐漸下降,破斷面均於銲錫球內。
  由於重流製程與潤濕天平試驗之反應條件不同,Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga銲錫與BGA基板經250℃重流製程後,由界面反應分析得知,鋁元素不參與界面反應於界面生成Au-Zn與Ag-Zn化合物層;而經150℃長時間時效後,由於元素之互相擴(Interdiffusion)在銲錫球內之區域有Ag-Zn-Au與Au-Zn化合物層,而在靠近基板處有Au-Zn與Zn-Ni化合物層生成。
  This research is investigated the interfacial reaction and adhesive behavior between Sn-Zn based solders and metallized Cu substrates. The microstructure and thermal property of Sn-Zn based solders were also studied. The wettability between Sn-Zn based solders and different substrates were investigated with the wetting balance. The adhesive strength between Pb-free solder balls and BGA substrate after reflow process was measured by shear test. The interfacial reaction behavior after dipping and reflow process was investigated by SEM and EPMA.
  The microstructure of Sn-9Zn alloy consists of ß-Sn matrix and Zn-rich phase. As for Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga alloy, besides the coexistence of ß-Sn matrix and Zn-rich phase, Ag-Zn compound precipitates within the solder matrix. The melting point of Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga alloy was found to be 196.4 ℃.
  The result of solderability test reveals that the deposition of Sn-Zn based solder on metallized Cu substrate was rough and dull in luster. Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder exhibits adequate wettability with the Cu/Ni-P/Au specimen above 250℃. The wetting time is more than 1 sec. Accordingly, the solderability between Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder and Au deposited layer needs to be further improved.
  AuZn3 and Al2Au intermetallic compound(IMC) formed at the interface of Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder and Cu/Ni-P/Au after dipping process. After thermal aging, the AuZnx, Al2Au and (Ag.Au)Zn3 formed at the interface. The Ni-P layer does notreact with other element to form IMC.
  According to the interfacial analysis on the interface between Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder and Cu/Au substrate, Al-Au-Zn IMC layer and Cu5Zn8 compound formed at the interface.
  The shear test data reveals that the adhesive strength of Sn-9Zn solder is higher than that of Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder after reflow and longtime thermal aging. The shear strength decreased with increasing aging time. The fracture occurred within the solder balls.
  In the reflow process, Ag-Zn and Au-Zn compound formed at the interface between Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solder and BGA substrate. After aged at 150℃ for 1000 hours, Ag-Al-Au and Au-Zn compound formed within solder matrix while Au-Zn and Ni-Zn formed at the substrate side. Al does not react with other element to form IMC.
總目錄

中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
總目錄……………………………………………………………………V
表目錄………………………………………………………………VIII
圖目錄……………………………………………………………………IX
第壹章 簡介 ………………………………………………………1
1-1電子構裝技術與銲錫材料…………………………………………1
1-2銲錫材料性質比較…………………………………………………2
1-3銲錫墊材料…………………………………………………………9
1-3-1 無電鍍鎳………………………………………………………11
1-4 潤濕現象…………………………………………………………12
1-4-1 助熔劑…………………………………………………………13
1-4-2 潤濕天平之原理與應用………………………………………14
1-5研究目的 …………………………………………………………17
第貳章 實驗方法與步驟…………………………………………18
2-1 實驗構想…………………………………………………………18
2-2合金基本性質分析…………………………………………………18
2-2-1銲錫合金之配製…………………………………………………18
2-2-1-1 91Sn-9Zn 合金之配製………………………………………18
2-2-1-2 Sn-Zn-Ag-Al-Ga 合金之配製………………………………18
2-2-2合金顯微組織觀察………………………………………………18
2-2-3 熔點量測…………………………………………………………22
2-3 基材的製備 ………………………………………………………22
2-3-1無電鍍鎳鍍層之製作……………………………………………22
2-3-2 無電鍍金鍍層之製作…………………………………………22
2-4 可銲錫性量測……………………………………………………26
2-4-1 基材前處理……………………………………………………26
2-4-2 潤濕天平實驗…………………………………………………26
2-4-3 界面金屬間化合物之觀察與分析……………………………28
2-4-3-1界面金屬間化合物之成份分析………………………………28
2-4-3-2 界面金屬間化合物之表面形態分佈………………………28
2-5 高溫時效處理……………………………………………………28
2-5-1 界面金屬間化合物之分析……………………………………30
2-6 無鉛銲錫球之製作………………………………………………30
2-7 重流………………………………………………………………30
2-8 分析與測試………………………………………………………30
2-8-1界面金屬間化合物之觀察與分.析……………………………30
2-8-1-1經重流後之界面觀察…………………………………………34
2-8-1-2經高溫時效處理後之界面觀察………………………………34
2-8-2 剪力強度之測試 ………………………………………………34
第參章 結果與討論……………………………………………………36
3-1 錫鋅銲錫合金顯微組織觀察與分析 ……………………………36
3-2 錫鋅銲錫合金之熱分析…………………………………………36
3-3 錫鋅系合金之可銲錫性…………………………………………36
3-3-1 浸鍍之銲錫外觀………………………………………………36
3-3-2 不同銲錫與基材可銲錫性之比較……………………………39
3-3-3 錫鋅銀鋁鎵銲錫合金與不同析鍍層之潤濕性比較…………43
3-3-3-1 錫鋅銀鋁鎵銲錫合金與Cu/Ni-P 和Cu/Ni-P/Au基材
反應之比較……………………………………………………………43
3-3-3-2 錫鋅銀鋁鎵銲錫與Cu/Ni-P/Au 和Cu/Au基材反應
之比較…………………………………………………………………46
3-4 錫鋅銀鋁鎵銲錫合金與不同析鍍層之界面反應觀察與分析…50
3-4-1錫鋅銀鋁鎵銲錫合金與Cu/Ni-P/Au基材間界面反應-
潤濕反應………………………………………………………………50
3-4-2錫鋅銀鋁鎵銲錫合金與Au線之界面反應………………………63
3-4-3 錫鋅銀鋁鎵銲錫合金與Cu/Ni-P/Au基板間界面反應-
時效處理………………………………………………………………68
3-4-4 界面金屬間化合物之形態……………………………………71
3-4-5錫鋅銀鋁鎵銲錫合金與Cu/Au基材間界面反應………………71
3-5 銲錫球與BGA 基板反應之觀察…………………………………77
3-5-1重流與時效處理後剪力強度試驗…..…………………………77
3-5-2銲錫合金與基板經重流後之界面觀察與分析…………………82
3-5-3銲錫合金與基板經時效處理後之界面觀察與分析……………87
第肆章 結論……………………………………………………………93
參考文獻………………………………………………………………94
致謝……………………………………………………………………103
自述……………………………………………………………………104
參考文獻

1.李瑞榮,”陶瓷構裝簡介及其發展趨勢”, 工業材料,第96期, 1994, pp. 43~48
2.李立中,陳允潔,”電子構裝”,材料與社會,第34期, 1989, pp. 16~22
3. D.P. Seraphim, R. C. Lasky and Che-Yu Li, Principles of Electronic
Packaging, McGraw-Hill, Inc., NY, 1989, p. 3
4. M. R. Pinnel and W. H. Knausenberger, ”Interconnection System
Requirements and Modeling”, AT&T Tech. Journal, Vol.66, No.4,
1987 pp.45~46
5.張世明, 吳文騰, 李育奇,”微凸塊接合技術”,電子發展月刊,第172期, 1992, pp. 2~11
6.楊省樞,”概觀未來晶圓之包裝”, 電子發展月刊, 第152期, 1990, pp. 65~71
7.林宏明譯,”非打線式接合法之技術動向”, 電子發展月刊, 第136期, 1989, pp. 46~54
8. A. W. Gibson, S. Choi, T. R. Bieler, and K. N. Subramanian,
“Enviromental Concerns and Materials Issues in Manufactured Solder Joints”, Proceeding of the 1997 IEEE International Symposium on Electronics and the Environment, Sanfrancisco, California, USA, May 1997, pp. 246~251
9. H. Reid, D. Moynihan, J. Leiberman, and B. Bradley,”Toxic Lead
Reduction Act of 1990”, S-2638, 1990
10. P. T.Vianco and D. R. Frear,”Issue in the Replacement of Lead-
Bearing Solders”, JOM, Vol.45, No. 7, July 1993, pp. 14~19
11. K. Seelig,”Study of Lead-Free Solder Alloys”, Circuits Assembly, Vol. 6, No. 10, 1995, pp. 46~48
12. C. Melton,”Alternative of Lead-Bearing Solder Alloys”, Proceeding of the 1993 IEEE International Sympocium on Electronics and the Environment, Arlington, Virginia, USA,1993, pp. 94~97
13. D. M. Jacobson and M. R. Harrison,”Lead-Free Soldering:A Progress Report”, The GEC Journal of Technology, Vol. 14, No. 2, 1997, pp. 98~109
14. P. Biocca,”Global Update on Lead-Free Solders”, Surface Mount Technology, June 1999, pp. 64~67
15. N. C. Lee,”Getting Ready for Lead-Free Solders”, Soldering &
Surface Mount Technology, No. 26, July 1997, pp. 65~69
16. J. W. Han, H. G. Lee and J. Y. Park,”Numerical Simulation of Dynamic Wetting Behavior in the Wetting Balance Method”, Materials Transactions, Vol. 43, No. 8, 2002, pp. 1816~1820
17. F. Guo, S. Choi, J. P. Lucas and K. N. Subramanian,”Effects of
Reflow on Wettability, Microstructure and Mechanical Properties in
Lead- Free Solders”, J. Electronic Materials, Vol. 29, No. 10, 2000, pp.
1241~1248
18. M. Hansen and K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958, p. 1218
19. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for
Electronic Assembly”, Internationsl Materials Reviews, Vol. 40, No.
8, 1995, pp. 65~93
20. E. P. Wood and K. L. Nimmo, “In search of new lead-free electronic
solders”, J. Electron. Mater., Vol. 23, No. 2, 1994, pp. 709~714
21. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G.
W. Kammlott and D. W. Finley, “Wave soldering with a low melting
point Bi-Sn alloy: effects of soldering temperature and circuit board
finishes”, J. Electron. Mater., Vol. 25, No. 7, 1996, pp.1128~1131
22. M. E. Loomans, S. Vaynman, G. Ghosh and M. E. Fine,“Investigation of Multi-Component Lead-free Solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.741~746
23. K. Seelig, “A Study of Lead-free Solder Alloys”, Circuits Assembly,
Vol. 6, No. 10, 1995, pp. 46~48
24. I. Artaki, D. W. Finley, A. M. Jackson, U. Ray and P. T. Vianco, “Wave Soldering with Lead-free Solders”, in: Proceedings of the Technical Program on Advanced Electronics Manufacturing
Technologies, August 1995, SMI Surface Mount International, San Jose, CA, pp. 495~510
25. N.C. Lee, J. Slattery, J. Sovinsky, I. Artaki and P. Vianco, “A Novel
Lead-free Solder Replacement”, Circuits Assembly, Vol. 6, No. 10 ,
1995, pp. 36~44
26. F. Hua and J. Glazer, “Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections”, in: Design and Reliability of Solders and Solder Interconections, R. K.
Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Murty, W. L.
Winterbottom (Eds.), The Minerals, Metals and Materials Society,
1997, pp. 65~74
27. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free
Solder Alloys”, JOM, Vol. 45, No.7, July 1993, pp. 36~40
28. A. M. Jackson, P. T. Vianco and I. Artaki, “Manufacturing Feasibility of Several Lead-free Solders for Electronic Assembly”, Proceedings of the 7th International SAMPE Electronics Conference, 20-23 June 1994, Parsippany, NJ, pp. 381~391
29. M. McCormack and S. Jin, “Improved Mechanical Properties in New,
Pb-free Solder Alloys”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.
715~720
30. C. M. Miller, I.E. Anderson and J.F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu”, J. Electron. Mater., Vol. 23, No. 7 , 1994, pp. 595~601
31. U. R. Kattner and W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase
Diagram”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 603~610
32. P. T. Vianco, F. M. Hosking and J. A. Rejent, “Wettability Analysis of Tin-based, Lead-free Solders”, in: Proceedings of the Technical
Program – National Electronic Packaging and Production Conference,
Vol. 3, Published by Cahner Exposition Group, 1992, Anaheim, CA,
pp. 1730~1738
33. D. B. Knorr and L. E. Felton, “Designing Lead-free Solder Alloys for
Advanced Electronics Assembly”, in: Proceedings of the 1994 Design
for Manufacturability Conference, ASME N.Y., New York, pp.27~34
34. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-
free, Sn-Zn-In Solder Alloys”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 687~690
35. J. H. Vincent and G. Humpston, “Lead-free Solders for Electronic
Assembly”, GEC Journal of Research, Vol. 11, No. 2, 1994, pp. 76~
89
36. R. K. Shiue, L. W. Tsay, C. L. Lin and J. L. Ou, “The reliability of selected Sn-Zn based lead-free solders on Au/Ni-P/Au substrate” , Microelectronics Reliability, 43, 2003, pp. 453~463
37. K. Suganuma, “Interfacial Phenomena in Lead-free Soldering”,
Proceedings EcoDesign’99: First International Symposium on
Enviromentally Conscious Design and Inverse Manufacturing, 1999,
pp. 620~625
38. D. Rflander, E. G. Jacobs, and R. Fpinizzotto, “Activation Energies
of Intermatallic Growth of Sn-Ag Eutectic Solder on Copper
Substrates”, J. Electron. Mater., Vol. 26, No. 7, 1997, pp. 883~887.
39. M. O. Alam, Y. C. Chan and K. N. Tu, “ Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad” , J. of Applied Physics, Vol. 94, No. 6, 2003, pp. 4108~4115
40. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T.
Tainigauchi and K. Tadayma, “Development of New Pb-Free Solder
Alloy”, Proceedings EcoDesign’99: First International Symposium
on Enviromentally Conscious Design and Inverse Manufacturing,
1999, pp. 21~24.
41. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T.
Tainigauchi and K. Tadayma, “Development of Lead-Free Solder Alloys of the Ge Doped Sn-Ag-Bi system”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp.606~609.
42. L. Ye, Z. Lai, J. Liu, and A. Tholen, “Recent Achievement in
Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by
Adding Boron”, 1999 International Symposium on Advanced
Packaging Materials, pp. 262~267
43. Z. Mei and J. W. Morris, Jr., “Characterization of Eutectic Sn-Bi Solder Joints”, J. Electron. Mater., Vol. 21, No. 6, 1992, pp. 599~607
44. C. H. Raeder, L. E. Felton, V. A. Tanzi and D. B. Knorr, “The Effect of Aging on Micostructure, Room Temperature Deformation, and Fracture of Sn-Bi/Cu Solder Joints”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 611~617
45. L.E. Felton, C. H. Raeder and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, JOM, Vol. 45, No. 7, July 1993, pp. 28~32
46. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical Properties”, Appl. Phys. Lett., Vol. 63, No. 1,5 July 1993, pp. 15~17
47. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free
Electronic Solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 709
~713.
48. M. Hirata, H. Noguchi and H. Yoshida, Matsushita Technical Journal, Vol. 45, No. 3, June 1999, pp. 82~87
49.N.C. Lee, Soldering & Surface Mount Technology, No. 26, 1997, pp. 65~68
50. T. Taketomo, T. Funaki, and A. Mastsunawa, Quarterly Journal of the Japan Welding Society, Vol. 17, No. 2, 1999, pp. 251~258
51. 施嘉玲, 錫鋅銀無鉛銲錫與銅基材之潤濕行為,國立成功大學材料科學及工程學系碩士論文, 民國91年, p. 83
52. H. P. Marius and H. Hildegard, “Aluminium-Tin-Zinc”, Ternary Alloy, Vol. 8, VCH Verlagsgesells Chaft, Weinheim, FGR, 1993, pp. 381~388
53. O. Ikuo and O. Hiroshi, Proceedings of the Annual Convention of the Wire Association International, Published by Wire Assoc. Int. Inc., Guilford, CT, USA, 1990, pp. 81~91.
54. 許惠閔, 錫鋅鋁銲錫隆點之浸鍍條件及其性質之研究, 國立成功大學材料科學及工程學系碩士論文, 民國89年, p. 77
55.孔令臣,“覆晶凸塊技術”,工業材料139期,1998, pp. 100~105
56. J. H. Lau, Chip on Board Technologies for Multichip Muldules, Van Nostrand Reinhold, An International Thomson Oublishing Company, New York, Ch. 5, 1994
57. D. S. Patterson, Peter Elenius, and J. A. Leal, “Wafer Bumping Technologies-A Comparative Analysis of Solder Deposition Process and Assembly Consideration”, Advances in Electronic Packaging-1997, Vol. 1, ASME, 1997, pp. 331~339
58.G. G. Gawrilov, Chemical(Electroless) Nickel-Plating, Portcullis Press Limited, Redhill, Surrey, Ch. 5~12, 1979
59.M. Pannovic, Proceedings of the Symposium on Electroless Deposition of Metals and Alloys, edited by M. Paunoric and I. Ohno, Published by The Electrochemical Society, Ch. 1, 1998
60. G. Leonida, Handbook of Printed Circuit Design, Manufacture, Components & Assembly, Electronchemical Publications Limited, Ayr, Scotland, Ch. 5~6,1981
61. F. Guo, S. Choi, J. P. Lucas and K. N. Subramanian, “ Effects of Reflow on Wettability, Microstructure and Mechanical Property in Lead-Free in Lead-Free Solders, J. Electron. Mater., Vol. 20, No. 10, 2000, pp. 1241~1248
62.陳力俊,李建平,薛銀陞,游萃蓉,周立人,龍文安,朱志勳,盧火鐵,鄭晃忠,蔡孟錦,謝宗雍,謝詠芬,何快容,材料科學叢書 4, 微電子材料與製程,中國材料科學學會
63. C. Lea, “Quantitative Solderability Measurement of Electronic
Components - Part 1 : The Wetting Balance”, Soldering & Surf.
Mount Technol., No.4, 1990, pp. 8~13
64. F. G. Yost, F. M. Hosking, and D. R. Frear, The Mechanics of Solder
Alloy Wetting and Spreading, Van Nostrand Reinhold, New York,
Ch. 2, 1993
65. P. T. Vianco, F. M. Hosking, and D. R. Frear, “Lead-Free Solders for
Electronics Applications - Wetting Analysis”, Materials
Developments in Microelectronic Packaging Conference Proceedings, Montreal, Quebec, Canada, Aug. 19-22, ASM, Materials Park, Ohio, 1991, pp. 373~380
66. M. McCormack, S. Jin, “Improved Mechanical Properties in New
Pb-free Solder Alloys”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.
715-720
67. 施嘉玲, 錫鋅銀無鉛銲錫與銅基材之潤濕行為, 國立成功大學材料科學與工程研究所碩士論文, 民國91年, p. 40
68. K. I. Chen and K. L. Lin, “The Microstrectures and Mechanical Property of the Sn-Zn-Ag-Al-Ga Solder Alloys – the Effect of Ag”, J. Electron. Mater., Vol. 31, No. 8, 2002, pp. 861~867
69. 施嘉玲, 錫鋅銀無鉛銲錫與銅基材之潤濕行為, 國立成功大學材料科學與工程研究所碩士論文, 民國91年, p. 52
70. Charles Kittel, Introduction to Solid State Physics / Charles Kittel.- 7th ed., JOHN WILEY & SONS, INC., 1996, p. 155
71. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp. 333~339
72. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp. 124~128
73 H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagram, ( New York : ASM, 1986 ), p. 316
74. H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagram, ( New York : ASM, 1986 ), p. 86
75. H. Baker, H. Okamoto, and S. D. Henry, Alloy Phase Diagrams, Vol. 3, ASM Handbook, p. 40
76. H. Baker, H. Okamoto, and S. D. Henry, Alloy Phase Diagrams, Vol. 3, ASM Handbook, p. 41
77. H. Baker, H. Okamoto, and S. D. Henry, Alloy Phase Diagrams, Vol. 3, ASM Handbook, p. 79
78. H. Baker, H. Okamoto, and S. D. Henry, Alloy Phase Diagrams, Vol. 3, ASM Handbook, p. 182
79. Y. Chonan, T. Komiyama, J. Onuki, R. Urao, T. Kimura and T. Nakahiro, “Influence of P Content in Electroless Plated Ni-P Alloy Film on Interfacial Structure and Strength between Sn-Zn Solder and Plated Au/Ni-P Alloy Film”, Materials Transactions., Vol. 43, No.8, 2002, pp.1887~1890
80. H. Okamoto and T. B. Massalski, Binary Alloy Phase Diagram, ( New York : ASM, 1986 ), p. 2086
81. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp. 321~328
82. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp. 115~121
83.柯清水,正文當代化學化工大辭典,正文書局,民國82年, p. 534
84.柯清水,正文當代化學化工大辭典,正文書局,民國82年, p. 443
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔