跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宗富
研究生(外文):Tzong-Fu Chen
論文名稱:Al-Zn合金之共振破壞特性研究
論文名稱(外文):A Study on the Vibration Fracture Characteristics of Al-Zn Alloys Under Resonance
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-Sheng Lui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:89
中文關鍵詞:Zn含量Al-Zn 合金冷卻速率共振破壞
外文關鍵詞:Cooling RatesVibration FractureAl-Zn AlloysZn Contents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
  長久以來Al-Zn合金被視為一種制振材料,考慮到進ㄧ步的實際應用,本研究進行組成及析出行為對Al-Zn合金共振破壞特性影響之探討。實驗材料為不同Zn含量之Al-Zn合金(Zn含量為7, 11, 49, 83wt%,分別以7Zn、11Zn、49Zn、83Zn表示),並藉由退火處理後冷卻速率的控制,以獲得水淬(WQ)、空冷(AC)、爐冷(FC)等不同析出狀態之試片。
  實驗結果顯示,經WQ處理之不同Zn含量試片制振性大小順序為83Zn>7Zn>11Zn>49Zn。在固定出力值之共振測試條件下,雖然83Zn有較好之制振性,但是7Zn振動壽命較佳,49Zn之振動破壞阻抗則均為四者中最差。於固定起始偏移量條件之下振動壽命順序則為7Zn>11Zn>49Zn>83Zn。以上現象與Zn含量不同所導致之組織差異有關。當Zn含量為7至49wt%時,組織特徵為alpha-Al晶粒以及於晶粒及晶界上析出之富Zn相顆粒,制振機制推測為差排滑移。當提高Zn含量時晶粒及晶界上析出物量增加,分別導致差排滑移不易及沿晶破壞發生。當Zn含量為83wt%時,組織呈alpha-Al及beta-Zn相間之層狀共析形態。制振機制應為alpha及beta相間之相界滑移,其制振效果佳,裂縫傳播阻抗卻相當差。
  以7Zn與83Zn試片進行冷卻速率效應調查結果顯示,兩組試片隨著冷卻速率之增加,制振性均隨之升高。且於固定出力值條件下,皆顯示WQ試片之共振壽命最好;於固定起始偏移量條件之振動壽命,7Zn與83Zn分別以WQ及AC試片最佳。以上現象與冷卻速率不同所導致之析出物量及分佈形態差異關係密切。
  The Al-Zn alloy has been considered as a high damping material. For practical use, this study investigated the effects of Zn content and precipitation behavior on the vibration fracture characteristics of the Al-Zn alloy under resonance. Al-Zn alloys with different Zn contents were prepared and designated according to their Zn content. To achieve varying degree of precipitation, all the samples were annealed and cooled with various cooling rates to obtain the water-quenched (WQ), air-cooled (AC) and furnace-aged (FC) specimens.
  Experimental results show that the damping capacity of the WQ samples with different Zn contents decreases in turn from 83Zn, 7Zn, 11Zn and to 49Zn. Under constant force conditions, although the 83Zn exhibits superior damping capacity, the 7Zn shows the greatest vibration life. In addition, the 49Zn sample has inferior vibration fracture resistance. As for constant initial deflection conditions, the vibration life in the decreasing order is 7Zn, 11Zn, 49Zn and then 83Zn. Differences in vibration properties of the samples with various Zn contents can be attributed to their microstructural characteristics. When the Zn content is raised from 7wt% to 49wt%, the microstructure of Al-Zn alloys consists of alpha-Al grains and the precipitates on the matrix or the grain boundaries. The mechanism for absorbing vibration energy could be considered as dislocation slip. A higher Zn content may result in more precipitates within Al grains or on the grain boundaries, consequently, dislocation is more difficult to slip and the intergranular fracture occurs. The 83Zn specimen shows a typical eutectoid structure of alternate alpha-Al and beta-Zn layers. The phase boundary sliding between alpha and beta can significantly dissipate vibration energy. However, this eutectoid structure possesses poor crack propagation resistance and thus inferior vibration life.
The 7Zn and 83Zn samples are chosen to examine the effect of cooling rate on vibration properties. Results show that for both 7Zn and 83Zn, a higher cooling rate will lead to a greater damping capacity and the WQ specimens possesses longer vibration life under constant force conditions. As for constant initial deflection conditions, the WQ samples of 7Zn and the AC of 83Zn exhibit better vibration fracture resistance. The amount and distribution of the precipitates influenced by cooling rate may account for those phenomena.
中文摘要..........................................................................Ⅰ
英文摘要..........................................................................Ⅱ
誌謝..........................................................................Ⅳ
總目錄..........................................................................Ⅴ
表目錄..........................................................................Ⅶ
圖目錄..........................................................................Ⅷ

第一章 前言...........................................................................1
第二章 文獻回顧...........................................................................3
2-1 振動特性...........................................................................3
2-1-1 共振頻率...........................................................................3
2-1-2 阻尼的影響...........................................................................4
2-1-3 振動D-N曲線...........................................................................5
2-2 裂縫傳播行為...........................................................................7
2-3 Al-Zn合金之基本特性介紹...........................................................................7
2-3-1 Zn含量效應...........................................................................9
2-3-2 冷卻速率效應..........................................................................11
第三章 實驗方法..........................................................................17
3-1 材料準備..........................................................................17
3-2 金相組織觀察與微觀組織定量解析..........................................................................18
3-3 拉伸試驗及硬度測試..........................................................................18
3-4 振動破壞試驗..........................................................................19
3-4-1 振動試片尺寸及設備..........................................................................19
3-4-2 共振疲勞測試..........................................................................19
3-4-3 裂縫路徑特徵與定量解析..........................................................................20
3-4-4 對數衰減率量測..........................................................................21
第四章 實驗結果..........................................................................26
4-1 Zn含量效應..........................................................................26
4-1-1 微觀組織、機械性質與拉伸破斷面特徵..........................................................................26
4-1-2 對數衰減率、D-N曲線特徵與共振壽命..........................................................................27
4-1-3 裂縫、破斷面觀察與定量解析..........................................................................29
4-2 冷卻速率效應..........................................................................31
4-2-1 微觀組織、機械性質與拉伸破斷面特徵..........................................................................31
4-2-2 對數衰減率、D-N曲線特徵與共振壽命..........................................................................32
4-2-3 裂縫、破斷面觀察與定量解析..........................................................................33
第五章 討論..........................................................................68
5-1 機械性質與材料微觀結構關係..........................................................................68
5-1-1 Zn含量效應..........................................................................68
5-1-2 冷卻速率效應..........................................................................69
5-2 振動阻尼與材料微觀結構關係..........................................................................70
5-2-1 Zn含量效應..........................................................................70
5-2-2 冷卻速率效應..........................................................................71
5-3 D-N曲線特徵..........................................................................72
5-4 裂縫傳播路徑..........................................................................73
5-5 共振壽命..........................................................................75
5-5-1 Zn含量效應對共振壽命之影響..........................................................................75
5-5-2 冷卻速率效應對共振壽命之影響..........................................................................76
5-5-3 共振壽命與對數衰減率、降伏強度、裂縫轉折度
以及沿晶破壞面積率之關係..........................................................................77
第六章 結論..........................................................................83

參考資料..........................................................................85
1.D. W. James, “High Damping Metals for Engineering Applications” Mat. Sci. Eng., 1969, vol. 4, no. 1, pp. 1-8.
2.I. G. Ritchie and Z. L. Pan, “High-Damping Metals and Alloys” Metall. Trans. A, 1991, vol. 22A, pp. 607-616.
3.H. Masumoto, M. Hinai, and S. Sawaya, “The Inluence of Cold-Working on the Damping Capacity of Al-Zn Alloys”, Trans. Jpn. Inst. Metals, 1983, vol. 24, pp. 681-688.
4.B. C. Moon, Z. H. Lee, “Damping Behavior of Al-Zn Alloys Produced by Spray Forming Process” Scripta Mater., 1998, vol. 38, no. 2, pp. 207-213.
5.K. Nuttall, “The Damping Characteristics of a Superplastic Zn-Al Eutectoid Alloy” J. Inst. Metals, 1971, vol. 99, pp. 266-270.
6.Y. Torisaka and S. Kojima, “Superplasticity and Internal Friction of A Superplastic Zn-22%Al Eutectoid Alloy” Acta Metall. Mater., 1991, vol. 39, no. 5, pp. 947-954.
7.Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company Inc., 1990, 2nd ed., pp. 4-160.
8.An Introduction to Mechanical Vibration, R. F. Stridel, Jr., John Wiley and Sons, Inc., New York, 1988, 3rd ed., pp. 96-226.
9.Dynamic Vibration Absorbers, Theory and Technical Application, B. G. Korenev and L. M. Reznikov, John Wiley and Sons, Inc., England, 1993, pp. 1-80.
10.Theory of Vibration, Volume II: Discrete and Continuous Systems, A. A. Shabana, Springer-Verlag, New York, 1991, pp. 1-40.
11.洪佳和,「亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討」,國立成功大學材料科學及工程學系,博士論文,民國90年。
12.振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
13.A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies” Journal of Applied Physics, 1956, vol. 27, no. 6, pp. 583-592.
14.A. Granato and K. Lucke, “Theory of Mechanical Damping due to Dislocations” Journal of Applied Physics, 1956, vol. 27, no. 7, pp. 789-805.
15.S. E. Urreta De Pereyra, H. Bertorello and A. A. Ghilarducca De Salva, “Precipitation and Grain Boundary Internal Friction Peaks in Al-Mg-Si”, Phys. Stat. Sol., 1988, vol. 108, pp. 577-586.
16.S. E. Urreta De Pereyra, A. A. Ghilarducca De Salva and F. Louchet, “Precipitation Internal Friction Peaks in Al-Mg-Si”, Phys. Stat. Sol., 1993, vol. 139, pp. 345-360.
17.E. Carreno-Morelli, S. E. Urreta De Pereyra and A. A. Ghilarducci De Salva, “High Temperature Damping in Al-Mg-Si Industrial Alloys”, Phys. Stat. Sol., 1996, vol. 158, pp. 449-462.
18.A. Dentsoras and A. D. Dimarogonas, “Resonance Contralled Fatigue Crack Propagation”, Eng. Fract. Mech., 1983, vol. 17, no. 4, pp. 381-386.
19.X. Zhu, “Stable Damping Associated with Linear Viscous Motion of the Interface in a Multiphase Al-Zn Alloy”, J. of Appl. Phys., 1990, vol. 67, pp. 7287-7291.
20.A. S. Nowick, “Anelastic Effects Arising from Precipitation in Aluminum-Zinc Alloys”, J. of Appl. Phys., 1951, vol. 22, no. 7, pp. 925-933.
21.I. G. Ritchie, Z. L. Pan and F. E. Goodwin, “Characterization of the Damping Properties of Die-Cast Zinc-Aluminum Alloy”, Metall. Trans. A, 1991, vol. 22A, pp. 617-622.
22.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., 1993, vol. 8, pp. 2216-2223.
23.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metall. Trans. A, 1995, vol. 26A, pp. 1123-1127.
24.林士晴,「球狀石墨鑄鐵之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
25.Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp. 71-91.
26.Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
27.J. J. Mason and R. O. Ritchie, “Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites”, Mater. Sci. Eng., 1997, vol. A231, pp. 170-187.
28.金屬實用二元合金狀態圖集,金屬發刊60年紀念,92/10特別臨時增刊號,72頁。
29.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 242-244.
30.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 101.
31.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 258.
32.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 186-188.
33.D. L. Douglass and T. W. Barbee, “Spinodal decomposition in Al/Zn alloys I - Mechanical properties” Journal of Materials Science, 1969, vol. 4, pp. 121-129.
34.R. C. Dorward, “On the Mechanical Properties of Al-40Pct Zn Alloys” Metallurgigal Transactions, 1970, vol. 1, pp. 2334-2336.
35.S. Krishnamurthy and S. P. Gupta, “Mechanical Properties of Thermally Cycled Al-40wt.%Zn Alloy Part Ⅱ”, Mater. Sci. Eng., 1977, vol. 30, pp. 167-174.
36.W. J. Kovavs and J. R. Low, JR, “Intergranular Fracture in an Al-15Wt Pct Zn Alloy”, Metall. Trans., 1971, vol. 2, pp. 3385-3400.
37.G. Kralik and H. Schneiderhan, “Fatigue Hardening of Al-4at%Zn Single Crystals” Scripta Metall., 1972, vol. 6, pp. 843-850.
38.N. Souami, M. Fagot, P. Chomel and J. P. Cottu, “Fatigue Particle Coarsening in Al-Zn Alloy” Scripta Metall., 1986, vol. 20, pp. 1673-1676.
39.R. G. Pahl, Jr. and J. B. Cohen, “Effect of Fatigue on the GP Zones in Al-Zn Alloys” Metall. Trans. A, 1984, vol. 15A, pp. 1519-1529.
40.M. C. Lu and S. Weissmann, “The Influence of Aging and Thermomechanical Treatments on the Fatigue Properties of an Al-6.5at%Zn Alloy” Mater. Sci. Eng., 1978, vol. 32, pp. 41-53.
41.R. Kroggel, H. Schierig, R. Schiffmann and P. Siebert, “Slip Bands in Quenched Al-Zn Alloys” Crystal Res. & Technol., 1985, vol. 20, no. 2, pp. 251-254.
42.P. Bartuska, J. Kratochvil and V. Sima, “Low Cycle Fatigue Cracking of Al 20wt% Zn Multicrystals” Czech. J. Phys., 1987, vol. B37, no. 5, pp. 619-624.
43.A. E. W. Smith and G. A. Hare, “Controlling the Zinc-Aluminium Eutectoid Reaction” J. Inst. Metals, 1973, vol. 101, pp. 320-328.
44.R. D. Garwood and A. D. Hopkins, “The Kinetics of the Eutectoid Transformation in Zinc-Aluminium Alloys” J. Inst. Metals, 1952-53, vol. 81, pp. 407-415.
45.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 361-362.
46.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 363-364.
47.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 252.
48.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 280.
49.Physical Metallurgy Principles, Robert E. Read-Hill and Reza Abbaschian, PWS Publishing Company, Boston, 1991, pp. 192-194.
50.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 163-164.
51.The Science and Engineering of Materials, Askeland and R. Donald, 1994, Third Edition, pp. 249.
52.The Science and Engineering of Materials, Askeland and R. Donald, 1994, Third Edition, pp. 383.
53.Micromechaniams in Particle-Hardened Alloys, J. W. Martin, Cambridge University Press, 1980, pp. 12-78.
54.J. Lindigkeit, G. Terlinde, A. Gysler and G. Lutjering, “The Effect of Grain Size on the Fatigue Crack Propagation Behavior of Aged-Hardened Alloys in Inert and Corrosive Environment”, Acta Metall. 1979, vol. 27, pp. 1717-1726.
55.G. Screm and F. Gatto, “Changes in Strain-dependent Internal Friction during Fatigue (of Al-Alloys)”, Mater. Sci. Eng., 1975, vol.18, pp. 75-80.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top