(3.227.208.0) 您好!臺灣時間:2021/04/20 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張天麟
研究生(外文):Tian-Lin Chang
論文名稱:Cr6+和Nb5+摻雜對化學溶液鍍著法生長鉍鑭鈦及鉍釹鈦薄膜鐵電性質之影響
論文名稱(外文):Effects of Cr6+ and Nb5+ doping on the ferroelectricity of chemical-solution-deposited Bi3.25La0.75Ti3O12 and Bi3.5Nd0.5Ti3O12 films
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:104
中文關鍵詞:鉍釹鈦鉍鑭鈦鐵電材料
外文關鍵詞:Bi3.25La0.75Ti3O12ferroelectricBi3.5Nd0.5Ti3O12
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  利用化學溶液鍍著法生長Bi3.5Nd0.5Ti3O12 (BNT)及Bi3.25La0.75Ti3O12 (BLT),探討摻雜Cr及Nb對其微結構及鐵電性質的影響。在摻雜Cr 的BNT (BNTCx) 及BLT (BLTCx)中,Cr陽離子以Cr3+ 及Cr6+ 的形式取代Ti4+ 的位置,其中以Cr6+ 為多數。摻雜Cr3+ 及Cr6+ 會分別減少及增加BNTCx和BLTCx的殘餘極化值 (2Pr),此外摻雜Cr會使得晶粒大小減小及促進C軸成長傾向,造成2Pr 的下降。在本實驗中BNTCx及BLTCx的2Pr隨著Cr添加量的增加而減少,顯示出Cr3+ 的取代,晶粒大小的減小及C軸成長效應三個因素大於Cr6+ 取代所造成氧空缺減少的效應。摻雜Nb在BNTNx薄膜中,當x=0到x=0.005,2Pr值會從40µC/cm2 增加到43µC/cm2,然後再隨著Nb添加量的增加而減少。在BNTNx薄膜中,Nb陽離子以Nb5+ 取代Ti4+ 的位置可以減少氧空缺,增加2Pr值。BNTNx 2Pr 值的變化可看成是(1)減少氧空缺、(2)晶粒大小的減少兩種效應相互競爭的結果。
Abstract
  The Cr and Nb doping on the microstructure and ferroelectricity of Bi3.5Nd0.5Ti3O12 (BNT) and Bi3.25La0.75Ti3O12 (BLT) films deposited by chemical-solution method were studied, respectively. For the Cr-doped BNT (BNTCx) and Cr-doped BLT (BLTCx) films the Cr cations substitutionally incorporated into the Ti4+ site were in the states of Cr3+ and Cr6+ with the amount of Cr6+ being dominant over that of Cr3+. The presence of Cr3+ and Cr6+ would degrade and improve the remanent polarization (2Pr) of BNTCx and BLTCx films, respectively. In addition, Cr doping induced a reduction in the grain size and c-axis oriented growth, resulting in the degradation of the 2Pr of BNTCx films as well. In the present study, the 2Pr of BNTCx and BLTCx films decreased with the Cr concentration (x) in the range of 0.01-0.1, revealing that the effects of Cr3+ doping, reduction of the grain size, and c-axis oriented growth are dominant over that of reduction of oxygen vacancies due to Cr6+ doping. For the Nb-doped BNT (BNTNx) films the 2Pr first increased from 40µC/cm2 at x=0 to 43µC/cm2 at x=0.005 and then decreased with increasing the Nb concentration (x) in the range of 0.01-0.1. In the BNTNx films the Nb cations substitutionally incorporated into the Ti site were in the state of Nb5+, which can reduce the amount of oxygen vacancies and thus improve the 2Pr. The variation of 2Pr with the Nb concentration (x) in the BNTNx films can be ascribed to the competition between the two effects, i.e., reduction of oxygen vacancies and reduction of grain size, induced by Nb doping.
本 文 目 錄

中文摘要……………………………………………………Ⅰ
英文摘要……………………………………………………Ⅱ
誌謝感言……………………………………………………Ⅲ
本文目錄……………………………………………………Ⅳ
表目錄………………………………………………………Ⅵ
圖目錄………………………………………………………Ⅵ

本文
第一章 簡介…………………………………………………1
1.前言………………………………………………………1
1.電子記憶體………………………………………………1
2.鐵電材料 ..………………………………………………1
2.記憶元件 ..………………………………………………3
第二章 基本理論……………………………………………6
1. 文獻回顧…………………………………………………6
1-1 PZT鐵電薄膜………………………………………6
1-2 SBT鐵電薄膜………………………………………7
1-3 BTO與BLT鐵電薄膜………………………………7
1-4 BNT鐵電薄膜………………………………………8
1-5 添加Bi2O3做為緩衝層……………………………9
1-6 添加高價陽離子在鐵電薄膜中……………………9
2.極化原理…………………………………………………10
3. 脈衝極化及疲勞量測原理………………………………11
4. 疲勞特性……………………………………………12
5 Bi4-XLaXTi3O12(BLT)之基本結構……………………13
6.化學溶液鍍著法…………………………………………13
6-1配方溶液的調配………………………………………14
6-2薄膜披覆…………………………………………………14
6-3低溫焦化熱處理………………………………………15
6-4高溫結晶與緻密化熱處理……………………………15
7. 電子槍蒸鍍系統…………………………………………15
8. 拉塞福背向散射儀………………………………………16
9. 掠角X光繞射法…………………………………………18
10. 化學分析電子儀………………………………………19
11. 實驗研究動機—BLT和BNT系鐵電薄膜………………20
第三章 實驗步驟與方法……………………………………22
1.實驗流程圖………………………………………………22
2. 溶液的配製……………………………………………23
2-1 BLTC溶液配製…………………………………………23
2-2 BNTC及BNTN 溶液的配製………………………………23
3.基板(底電極)Pt/Ta/SiO2/Si製備…………………23
4.BLTC、BNTC和BNTN鐵電薄膜製備………………………24
5.薄膜退火 .………………………………………………24
6.上電極製作 ……………………………………………24
7.接觸退火 ………………………………………………25
8.鐵電性質量測與分析……………………………………25
8-1.結晶相鑑定……………………………………………25
8-2.成分分析………………………………………………25
8-3.薄膜厚度測定…………………………………………25
8-4.遲滯曲線、時效與疲勞量測…………………………25
8-5. SEM及TEM的觀察………………………………………26
8-6.漏電流量測……………………………………………26
8-7.介電常數量測…………………………………………26
8-8.價數測定………………………………………………26
第四章 結果與討論…………………………………………27
1. 退火製程對BLT及BNT C軸成長的影響………………27
2. 溶液濃度對BNT及BLT薄膜殘餘極化的影響…………28
3. 摻雜Cr對BNT薄膜鐵電性質的影響……………………29
4. 摻雜Nb對BNT薄膜鐵電性質的影響……………………31
5. 參雜Cr對BLT薄膜鐵電性質的影響……………………33
第五章 結論…………………………………………………35
參考文獻……………………………………………………37
參考文獻
1.毫微米通訊, 鐵電記憶體簡介, 第五卷第四期33.鐵電記憶體簡介.
2.R. A. Roy, K. F. Etzold, and J. J. Cuomo, Mat. Res. Soc. Symp. Proc. 200, 141(1990).
3.工業材料, 107期, 84年11月.
4.J. F. Scott, and C. A. Paz. de. Araujo, “Ferroelectric memories”, Science, 246, 1400(1989).
5.M. H. Francombt, and S. Krishnaswany, J. Vac. Sci. Technol. A8, 1382(1990).
6.G. A. Racine, R. Luthier, and N. F. Derooj, in Microelectro Mechanical System, Fort Lauderdale, FL 1993(IEEE, New York, 1993), PP128-132.
7.K. Brooks, D. Damjanovic, A. Kholkin, I. Renney, N. Setter, P. Luginbuhl, G. A. Racine, N. F. Derooij, and A. Saaman, Integr Ferroelec. 8, 13(1995).
8.A. M. Glass, Phys. Rev. 172, 564(1968).
9.H. P. Beerman, Ferroelectric, 2, 123(1971).
10.D. W. Chapman, J. Vac. Sci. Technol. 9, 425(1972).
11.J. C. Webster, and F. Zernike, Ferroelectrics, 10, 249(1976).
12.G. C. Messenger, and F. N. Coppage, IEEE Trans. Nucl. Sci. NS-35, 1461(1988).
13.S. K. Dey, and R Znleeg, Ferroelectric, 108, 37(1990).
14.C. A. Pazde. Araujo, L. D. Mcmillan, B. M. Melnick, J. D. Cucharo, and J. F. Scott, Ferroelectrics, 104, 241(1990).
15.K. Ramkumar, J. Lee, A. Safari, S. C. Danforth, Mat. Res. Soc. Symp. Proc. 200, 121(1990).
16.G. Shirane and K. Suzuki , J. Phy. Soc. Japan ,7 , 1952 , p333.
17.R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, P. L. Hart, J. M. Taroscon, Science, Vol.251, 17 May (1991).
18.W. Y. Wu, J. Appl. Phys. 50, 4317(1979).
19.E. C. Subbarao, Phy. Rev. 122, 849(1961).
20.Y. Xu, “Ferroelectric Materials and Their Appllications”, North Holland, Netherlands, pp. 1-36. (1991).
21.J. F. Scott, “Ferroelectric memories a atatus report” present at Government Industry Review of Ferroelectric memories Sept 14-15, 1998.
22.D. Bondarant, and Fred Gnadinger “Ferroelectric, 1988 for nonvolatile Rams” IEEE Spectrum, V. 26. pp. 30-33, July 1989.
23.B. M. Melnick, C. A. Araujo, L. D. Mcmilan, D. A. Caver, and J. F. Scott, Ferroelectrics, 116(1991)
24.C. H. Peng, J. Chang, and S. B, Desu, in A. I. Kingon, E. R. Myers and Tuttle(eds), Mater. Res. Soc Symp. Proc. Ferroelectric Thin FilmsII, MRS, Pittsburgh. PA, 7(1992), P. 21.
25.K. Aoki, Y. Fukuda, and A. Nishimura, J. Appl. Phys. 32(1993), 4147.
26.G. R. Fox, and S. B. Krupanidhi, J. Mater. Res. 9(1994), 699
27.J. F. Chang, and S. B. Desu, J. Mater. Res. 9(1994), 915.
28.P. C. Fazan, Integr. Ferroelect. 4, 247(1994).
29.W. Kinney, Integr. Ferroelect. 4, 131(1994).
30.R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D. L. Hart, K. Luther and J. M. Yarascon, Science, 252(1991), 944.
31.R. Remesh, J. Lee, T. Sands, and V. G. Keramidas, “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2/Si substrates using a bismuth titanate template layer.” Appl. Phys. Lett. 64(19), (1994)2511.
32.B. Aurivillins. Ariki. Kemi. 1, 463, 499(1949); Ibid. 2, 519(1950).
33.C. A. Paz. De. Araujo, J. D. Cuchiaro, M. C. Scott, and L. D. Mcmillan, International publication No. Wo93/12542, (24 June 1993).
34.B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories.” Nature(London)401, 682(1999).
35.U. Chon, H. M. Jang, S. H. Lee, G. C. Yi, J. Mater. Res. 16,3124(2001)
36.H. N. Lee, D, Hesse, N. Zakharov, U. Gosele, SCIENCE 296,2006(2002)
37.Y. M.Sun, Y. C. Chen, J. Y. Gan, J. C. Hwang, Jpn. J. Appl. Phys. 41,892(2002)
38.T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada, Appl. Phys. Lett. 80,2746(2002)
39.M. Osada, Y. Noguchi, M. M. Miyayama, J. Appl. Phys. 92,1518(2002)
40.B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories.” Nature(London)401, 682(1999).
41.U. Chon, G.C. Yi, and H.M. Jang, Appl. Phys. Lett. 78, 658 (2001).
42.J. F. Scott, and C. A. Paz. de. Araujo, “Ferroelectric memories”, Science, 246, 1400(1989).
43.O. Auciello, J. F. Scott, & R. Ramesh, “The physics of ferroelectric memories.” Phys. Today, 51, 22-27(1998).
44.C. A. Araujo, et al. “Fatigue-free ferroelectric capacitors with platinum electrodes.” Nature 374, 627-629(1995).
45.O. Auciello, & R. Ramesh, “Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories.” MRS Bull. 21, 31-36(1996).
46.C. A. Araujo, et al. “Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue-has high dielectric constant and low leakage current.” US Patent No. 5, 519, 234(1996).
47.R. Dat, J. K. Lee, O. Auciello, A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue.” Appl. Phys. Lett, 67, 572-574(1995)
48.T. Li, et al. “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 68, 616-618(1996).
49.K. Amanuma, T. Hase, & Y. Miyasak, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 66, 221-223(1995).
50.S. E. Cummins, & L. E. Cross, “Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals.” Appl. Phys. Lett, 10, 14-16(1967)
51.P. C. Joshi, & S. B. Krupanidhi, “Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films.” Appl. Phys. Lett, 62, 1928-1930(1993).
52.T. Kijima, M. Ushikubo, & H. Matsunaga, “New low temperature processing of metalorganic chemical vapor deposition- Bi4Ti3O12 thin films using BiOX buffer layer.” J. Appl. Phys. 38, 127-130(1999).
53.B. H. Park, et al. “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12.” Appl. Phys. Lett, 74, 1907-1909(1999).
54.R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides.” Acta Cryst. A32, 751-767 (1976)
55.H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, Jpn. J. Appl. Phys. 41,6820(2002)
56.R. Dinu, M. Dinescu, J.D. Pedarnig, R.A. Gunasekaran, D. Bauerle, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. A 69, 55 (1999).
57.W.C. Shin and S.G. Yoon, Appl. Phys. Lett. 79, 1519 (2001).
58.J.T. Dawley, R. Radspinner, B.J.J. Zelinski, and D.R. Uhlmann, J. Sol-Gel Sci. Technol. 20, 85 (2001).
59.D. Bao, T.W. Chiu, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Appl. Phys. 93, 497 (2003).
60.Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, “Defect control for large remanent polarization in bismuth titanate ferroelectrics -Doping effect of higher valent cations-.” Jpn. J. Appl. Phys. 39, 1259(2000).
61.X. Wang, and H. Ishiwara, Appl. Phys. Lett. 82, 2479 (2003).
62.W.T. Lin, T.W. Chiu, H.H. Yu, J.L. Lin, and M.S. Lin, J. Vac. Sci. Technol. A 21, 787 (2003).
63.M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianos, J. Mater, Res. 4, 759(1989).
64.Y. Tokura, H. Takagi, and S. Vchida, Nature, 337, 345(1989).
65.S. K. Dey, and R. Zuleeg, Ferroelectric, 108, 37(1990).
66.A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).
67.Y. Noguchi, M. Miyayama, and T. Kudo, Phys. Rev. B 63,214102 (2001).
68.Lawrence H. Van. Vlack, “Elements of materials science and engineering”, 1989, p.273.
69.Arit, G. & Pertser, N. A. J. Appl. Phys. 70, 2283-2289(1991).
70.Artit, G. & Robels, U. Integ. Ferroelect. 3, 247-254(1993).
71.I. S. Zheluder, Physics of crystalline ielectrics (Plenum, New York,1971).
72.Plessner, K. W. Proc. Phys., Soc. B69, 1261-1269(1956).
73.Scott. J. F. and Araujo, C. A. Science, 246, 1400-1405(1989).
74.Duiker, H. H. Etal. J. Appl. Phys. 68, 5783-5789(1990).
75.Postnikov, V. S. Pavlov, V. S. Gvidnev, S. A. &Turkor, S. K. Sov. Phys. Solid. St.10, 1267-1270(1968).
76.Lohkamper, R. Neumann, H. & Arit G. J. Appl. Phys. 68, 4220-4227(1990).
77.I. K. Yoo, and S. B. Desu, Phys. Sol. (a)133. 565(1992).
78.S. H. Kim, Y. S. Choi, and C. E. Kim, “Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route”, J. Mater. Res., Vol. 12(6), pp. 1576-1581(1997)
79.陳三元,”強介電薄膜之液相化學法製作”,工業材料108期,P.100
80.R. W. Vest, “Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electroptic Films: A Review”, Ferroelectrics, Vol.102, pp. 53-68 (1990)
81.汪建民, 材料分析 (中國材料科學學會, 新竹市, 民國87)
82.L.R. doolittle, Nucl. Instr. Met. B9 (1985) 334.
83.吳南均 編譯, “高等X光學”. 國立成功大學材料科學及工程學系(第二版).
84.Takashi Kojima, Tomohiro Sakai, Takayuki Watanabe, Hiroshi Funakubo, Keisuke Saito, and Minoru Osada, “Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition.”Appl. Phys. Lett. 80, 2746-2748 (2002)
85.Takashi Kojima, Takayuki Watanabe, and Hiroshi Funakubo, “Ferroelectric properties of lanthanide-substituted Bi4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition.” J. Appl. Phys. 93, 1707-1712 (2003)
86.T. Choi, Y. S. Kim, C. W. Yang, & J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12thin films on Si for a metal-ferroelectric-insulator-semiconductor structure.” Appl. Phys. Lett., 79, 1516-1518(2001).
87.H. N. Lee, D. Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations.” Appl. Phys. Lett., 80, 1040-1042(2002).
88.T. Watanabe, H. Funakubo, M. Osada, Y. Noguchi, M. Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition.” Appl. Phys. Lett., 80, 100-102(2002).
89.D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition.” J. Appl. Phys. 88, 5941(2000).
90.D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu, and N. Ming, J. Mater. Res. 16, 1325(2001).
91.J. K. Kim, S. S. Kim, and J. Kim, J. Mater. Res. 18 1884 (2003).
92.U. Chon, J. S. Shim, and H. M. Jang, J. Appl. Phys. 88, 5941 (2000)
93.D. Wu, A. D. Li, T. Yu, N. B. Ming, Appl. Phys. A 78, 95 (2004).
94.X. Du and I.W. Chen, J. Am. Ceram. Soc., 81 3253 (1998).
95.Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, “Crystal and electronic structures of Bi4-XLaXTi3O12 ferroelectric materials.” Appl. Phys. Lett., 79, 2791(2001).
96.A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).
97.Y. Y. Yao, C. H. Song, P. Bao, D. Su, X. M. Lu, J.S. Zhu, and Y, N. Wang. Appl. Phys. Lett., 95,3126 (2004).
98.S. B. Ren, C. J. Lu, J.S. Liu, H. M. Shen, and Y. N. Wang. Phys. Rev. B 54, R14337 (1996).
99.S. B. Ren, C. J. Lu, H. M. Shen, and Y. N. Wang. Phys. Rev. B 55, 3485 (1997).
100.M. Nagata, D. P. Vijay, X. Zhang, and S. B. Desu. Phys. Stat. Sol. (a) 157, 75 (1996)
101.R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, (PWS Publishing Company, Boston, 1994)
102.H. Funakubo, T. Watanabe, T. Kojima, T. Sakai, Y. Noguchi, M. Miyayama, M. Osada, M. Kakihana, K. Saito, J. Cry. Growth 248 (2003) 180-185.
103.Di Wu, Aidong Li, and Naiben Ming. J. Appl. Phys. 95, 4257 (2004)
104.T. Kojima, T. Watanabe, H. Funakubo, K. Saito, M. Osada, M. Kakihana. J. Appl. Phys. 93, 1707 (2003)
105.H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, H. Funakubo, and T. Kojima, Appl. Phys. Lett. 81, 2229 (2002).
106.S. T. Zhang, X. J. Zhang, H. W. Chang, Y. F. Chen, Z. G. Liu, and N. B. Ming, Appl. Phys. Lett. 83, 4378 (2003).
107.U. Chon, H. M. Jang, M. G. Kim, and C. H. Chang, Phys. Rev. Lett. 89, 087601-1 (2002).
108.T. Kojima, T. Watanabe, H. Funakubo, K. Satio, M Osada, Y. Noguchi, and M. Kakihana, J. Appl. Phys. 93, 1707 (2003)
109.H. Maiwa, N. Lizawa, D. Togawa, T. Hayashi, W. Sakamoto, M. Yamada, and S. Hirano, Appl. Phys. Lett. 82, 1760 (2003)
110.C.D. Wagner. W.M. Riggs. L.E. Davis. J.F. Moulder. G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy, (1979).
111.W. T. Lin, C. W. Fan, H. H. Yu, and C. S. Wu, Thin Solid Films.(in press)
112.J. L. Lin, T. L. Chang, and W. T. Lin, J. Electronic. Mater. (in press)
113.S.E. Cumnins and L.E. Cross, J. Appl. Phys. 39, 2268 (1968).
114.Y. Shimakawa, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi,
Appl. Phys. Lett. 79, 2791 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳玉枝、林麗華(2002),「護理人員授能與組織使命感相關因素之探討」,慈濟護理雜誌,第一卷,第四期,第53-64頁。
2. 黃敏萍、鄭伯壎、王建忠(2003),「轉型領導、團隊內互動、及團隊與成員效能:IPO模式之驗證」,管理學報,第二十卷,第三期,第397-427頁。
3. 13. 黃榮吉,謝明宏,方文昌,黃營杉,「產品創新、產品研發程序與網際網路使用:以台灣中小型製造業為例」,中山管理評論,第十卷,第三期,第291~315頁(2002)。
4. 陳心田(2003),「員工-主管互動、知覺組織支持、組織承諾與組織公民行為:我國科技產業研發人員之分析」,交大管理學報,第二十三卷,第一期,第27-70頁。
5. 79.陳三元,”強介電薄膜之液相化學法製作”,工業材料108期,P.100
6. 9. 陳嵩,「產品技術新穎性、製程新穎性、製造早期涉入、新產品績效關連之實證研究」,輔仁管理評論,第九卷,第一期,第125∼150頁。
7. 姚燕洪(1999),「邁向人才的新世紀-人才的投資與管理」,能力雜誌,第五二二期,第30-36頁。
8. 羅世輝、湯雅云(2003),「內外控人格特質與授權賦能認知對工作滿足之影響-以金融保險業為例」,人力資源管理學報,第三卷,第一期,第2-19 頁。
9. 黃品全(2003),「顧客接觸人員與上司、同事關係對賦能及服務工作之影響-社會交換的觀點」,管理評論,第二十二卷,第四期,第57-80頁。
 
系統版面圖檔 系統版面圖檔