跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/05 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡倫
研究生(外文):Yi-Lun Chen
論文名稱:以陽極沈積法製備之氧化錳電極的材料特性與擬電容性質
論文名稱(外文):The material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition
指導教授:蔡文達蔡文達引用關係
指導教授(外文):Wen-Ta Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:氧化錳陽極沈積超高電容器擬電容
外文關鍵詞:anodic depositionmanganese oxidepseudo-capacitivesupercapacitor
相關次數:
  • 被引用被引用:20
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以製程簡單之陽極沈積法,於0.5M的醋酸錳水溶液中,嘗試於鎳基材上直接沈積含水錳氧化物,探討不同陽極化電位(0.5V、0.65V、0.8V和0.95V)及熱處理溫度(100-500℃)對含水氧化錳電極的材料特性和擬電容行為之影響。並尋找以鎳為基材之氧化錳電極可適用的電解質溶液。
  就電極之材料分析方面,以掃描式電子顯微鏡觀察電極的表面型態,皆為奈米級的絲狀組織;由低掠角X光繞射圖譜得知氧化錳結晶性不佳,而熱處理有助於氧化錳結晶性之提升;利用X光光電子能譜儀來分析鍍層之表面成分組成及化合狀態,結果顯示陽極電位為0.5V時可得三價和四價錳之混合氧化物,當電位增為0.65V或以上時,則鍍膜主要為四價錳的氧化物。而氧元素則由Mn-O-Mn、Mn-O-H和H-O-H所組成;經過熱處理後的氧化錳也是三價和四價錳的混合態,當熱處理溫度增加至500℃,氧化物發生還原反應轉變為以三價錳為主的Mn2O3,結晶水大部分在100℃時被去除,最終無水之錳氧化物成為氧化錳電極的主要成分。
  而就電極材料之電化學性質方面,將氧化錳電極於0.1M的硫酸鈉水溶液中進行循環伏安測試,以0.5V陽極化電位製備的氧化錳電極具最大比電容值;隨著陽極化電位和熱處理溫度的增加,氧化錳電極之比電容值逐漸降低,當熱處理溫度為500℃時喪失擬電容特性。然而,熱處理能有效地改善氧化錳電極之循環穩定性。
  最後,氧化錳電極僅於中性的Na2SO4水溶液中具有優異之擬電容行為,於KCl、Na2SO3或Na2S2O3水溶液中則否。
  Hydrous manganese oxide are prepared by anodic deposition on the nickel substrate in manganese acetate solution. The effects of deposition potential (0.5V, 0.65V, 0.8V and 0.95V) and heat treatment (100-500°C) on the material characteristics and electrochemical performances of the hydrous manganese oxide were investigated.
  The surface morphology of the oxide prepared was examined by scanning electron microscope. X-ray diffraction patterns of manganese oxide electrodes indicated that the as-deposited oxides have poor crystallinity. The heat treatment improved the crystallinity of the as-deposited oxide. X-ray photoelectron spectroscopy was carried out to examine the chemical state of the deposit. Analytical results displayed that the oxide was composed of both trivalent and tetravalent manganese oxide at a deposition potential of 0.5 VSCE. However, the tetravalent manganese oxide became the dominant species in the film deposited at above 0.65 VSCE. The O 1s spectra of deposited manganese oxide could be deconvoluted into three constituents that corresponded to different oxygen-containing species such as Mn-O-Mn, Mn-O-H and H-O-H. Deposited manganese oxide annealed at various temperature were composed of both trivalent and tetravalent species, too. When the annealing temperature was increased to 500℃, reduction of the oxide occurred and nearly trivalent manganese could be obtained. The release of structural water and the dehydration of deposited manganese oxide could occur at 100℃. When the annealing temperature was increased further to 500℃, the hydroxide component was decreased drastically and anhydrous Mn-O-Mn became the dominant species in the oxide.
  The manganese oxide formed at 0.5VSCE exhibited the highest specific capacitance. Increasing the anodic potential and the heat temperature reduced the specific capacitance and manganese oxide annealed at 500ºC lost the pseudo-capacitive property. However, the cyclic stability of as-deposited manganese oxide was significantly improved by introducing proper heat treatment.
  Finally, the manganese oxide electrode exhibited excellent pseudo-capacitive performance only in the neutral Na2SO4 electrolyte, not in KCl, Na2SO3 or Na2S2O3 solution.
總目錄
中文摘要………………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………………Ⅲ
總目錄…………………………………………………………………………………Ⅴ
表目錄…………………………………………………………………………………Ⅷ
圖目錄…………………………………………………………………………………Ⅸ

第一章 前言………………………………………………………………………1
第二章 基礎理論和文獻回顧……………………………………………………4
2-1 儲能元件概述 ……………………………………………………………4
2-2 電化學電容器 ……………………………………………………………6
2-2.1 電化學電容器的工作原理 ……………………………………………6
2-2.2 電化學電容器的電極材料 ……………………………………………7
2-2.3 電化學電容器電解液的種類 …………………………………………8
2-2.4 電化學電容器的電容量測 ……………………………………………9
2-3 金屬氧化物電極…………………………………………………………12
2-3.1 金屬氧化物電極的製備方法…………………………………………12
2-3.2 金屬氧化物電極應用實例……………………………………………14
第三章 實驗方法和步驟 ………………………………………………………26
3-1 電極製作…………………………………………………………………26
3-1.1 電極基材前處理………………………………………………………26
3-1.2 不同陽極化電位製備氧化錳電極……………………………………26
3-1.3 氧化錳之熱重分析(TG/DTA)………………………………………27
3-1.4 氧化錳電極之熱處理…………………………………………………27
3-2 材料分析…………………………………………………………………28
3-3 電化學性質測試…………………………………………………………28
3-3.1 擬電容特性之評估……………………………………………………28
3-3.2 不同電解質……………………………………………………………29
第四章 實驗結果與討論 ………………………………………………………31
4-1 氧化錳之熱重熱差分析…………………………………………………31
4-2 氧化錳電極之表面型態觀察……………………………………………31
4-3 氧化錳電極之結晶結構…………………………………………………33
4-4 氧化錳電極之X射線光電子能譜分析 …………………………………33
4-5 氧化錳電極之電化學性質………………………………………………36
4-5.1 擬電容特性之評估……………………………………………………36
4-5.2 循環穩定性之測試……………………………………………………38
4-5-3 經多次循環伏安測試後之氧化錳電極表面型態……………………39
4-6 不同電解質溶液之測試……………………………………………………40
第五章 結論 ……………………………………………………………………72

參考文獻………………………………………………………………………………74
【1】M. Carlen and R. Kotz, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol.45, p.2483, 2000.
【2】B.E. Conway, “Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage”, J. Electrochem. Soc., vol.138, p.1539, 1991.
【3】J. P. Zheng, J. Huang, and T.R. Jow., “The limitation of energy density for electrochemical capacitors”, J. Electrochem. Soc., vol.144, p.2026, 1997.
【4】B. Pillay and J. Newman, “The influence of side reactions on the performance of electrochemical double-layer capacitors”, J. Electrochem. Soc., vol.143, p.1806 , 1996.
【5】J.P. Zheng, T.R. Jow, “High energy and high power density electrochemical capacitors.”, J. Power Sourses, v.62, p.155, 1996.
【6】H-Hwan Kim, Kwang-Bum Kim, “Ruthenium oxide thin film electrodes for supercapacitors”,Electrochem. Solid-State Lett., vol.4, n5, p.A62, 2001.
【7】J.P. Zheng, P.J. Cygan, T.R. Jow, “Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors.”, J. Electrochem. Soc., vol.142, p.2699, 1995.
【8】J.P. Zheng, T.R. Jow, “A new charge storage mechanism for electrochemical capacitors”, J. Electrochem. Soc., vol.142, p. L6, 1995.
【9】H.Y. Lee, J.B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, vol.2, p.565, 1999.
【10】Suh-Cem Pang, Marc A. Anderson, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., vol.147, p.444, 2000.
【11】J. Jiang, A. Kucernak, “Electrochemical supercapacitor material based on manganese oxide: preparation and characterization”, Electrochim. Acta, vol.47, p.2381, 2002.
【12】Chi-Chang Hu, Ta-Wang Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochemistry Communications, vol.4, p.105, 2002.
【13】Kuo-Chuan Liu, Marc A. Anderson, “Porous Nickel oxide/Nickel films for electrochemical capacitor”, J. Electrochem. Soc., vol.143, p.124, 1996.
【14】黃耀煌、胡啟章,『循環伏安法製備之含水釕氧化物於電化學電容器的應用』,國立中正大學化工所碩士論文。
【15】Chi-Chang Hu, Ta-Wang Tsou, “Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim Acta, vol.47, p.3523, 2002.
【16】Nae-Lih Wu, “Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, vol.113, p.173, 2003.
【17】Y.U. Jeong, A. Manthriram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., vol.149, p.A1419, 2002.
【18】S. Sarangapani, B.V. Tilak, C.-P. Chen, “Materials for electrochemical capacitors”, J. Electrochem. Soc., vol.143, p.3791, 1996
【19】D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, vol.74, p.99, 1998.
【20】M. Nakamura, M. Nakanishi, K. Yamamoto, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors”, J. Power Sources, vol.60, p.225, 1996.
【21】B.E. Conway, “Electrochemical Supercapacitors”, Kluwer Academic Publishers, New York, 1999.
【22】J. H. Park, O Ok Park, “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes”, J. Power Sourses, v.111, p.185, 2002
【23】J.P. Zheng and T.R. Jow, “Effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors”, J. Electrochem. Soc., vol.144, p2417, 1997.
【24】蔡文達,張仍奎,金屬氧化物系列超高電容器簡介,材料會訊,8[3], 35, 2001。
【25】M. Ue, K. Ida, and S. Mori, “Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors”, J. Electrochem. Soc., vol.141, p.2989, 1994.
【26】A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, John Wiley & Sons, Singapore, 1980.
【27】H.Y. Lee, S.W. Kim, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., vol.4, n3, p.A19, 2001.
【28】H.Y. Lee, J.B. Goodenough, “Brief communication Supercapacitor Behavior with KCl Electrolyte”, J. Solid State Chem., vol.144, p220, 1999
【29】Chi-Chang Hu, Yao-Huang Huang, “Cyclic voltammetric deposition of hydrous Ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., vol.146, n7, p2465, 1999.
【30】Chi-Chang Hu, Ta-Wang Tsou, “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitor using experimental strategies”, J. Power Sources, vol.115, p.179, 2003.
【31】Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura, “Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method”, Mater. Res. Bull., vol.37, p.1411, 2002.
【32】S. Ardizzone, G. Fregonara, S. Trasatti, ““Inner” and “outer” active surface of RuO2 electrodes”, Electrochim. Acta, v.35, p.263, 1990.
【33】R. Kotz, S. Stucki, “Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media”, Electrochim. Acta, v.31, p.1311, 1986.
【34】C. Tsang, J. Kim, A. Manthiram, “Synthesis of Manganese Oxides by Reduction of KMnO4with KBH4in Aqueous Solutions”, J. Solid State Chem., vol.137, p.28, 1998.
【35】H. Kim, B.N. Popov, “Synthesis and characterization of MnO2-based mixed oxides as supercapacitors”, J. Electrochem. Soc., vol.150, p.D56, 2003.
【36】J.K. Chang, W.T. Tsai, “Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors”, J. Electrochem. Soc., vol.150, p.A1333, 2003.
【37】M. Chigane, M. Ishikawa, “Manganese oxide Thin film preparation by potentiostatic Electrolyses and Electrochromism”, J. Electrochem. Soc., vol.147, p.2246, 2000.
【38】B. R. Strohmeier and D. M. Hercules, “Surface spectroscopic characterization of manganese/aluminum oxide catalysts”, J. Phys. Chem., vol.88, p.4922, 1984.
【39】M. Chigane, M. Ishikawa, M. Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism”, J. Electrochem. Soc., vol.148, p.D96, 2001.
【40】Earl M. Otto, “Equilibrium pressures of oxygen over MnO2- Mn2O3 at various temperatures”, J. Electrochem. Soc., vol.112, p.367, 1965.
【41】A. N. Grundy, B. Hallatedt and Ludwig J. Gauckler, “Assessment of the M n-O System”, Journal of Phase Equilibria, v. 24, p.21, 2003.
【42】C. Lin, J. A. Ritter, B.N. Popov, “Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogel”, J. Electrochem. Soc., vol.146, p.3155, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top