跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉禹輝
研究生(外文):Yu-Hui Liu
論文名稱:電泳沉積氧化鋅鍍層其及性質
論文名稱(外文):ZnO coatings fabricated by electrophoretic deposition and its properties.
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:氧化鋅電泳
外文關鍵詞:electrophoretic depositionzinc oxide
相關次數:
  • 被引用被引用:12
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  氧化鋅變阻 器具有優越的電流-電壓非歐姆特性(non-ohmic characteristics)和突波吸收能力,因此被廣泛應用在電子和固態電子元牛上,作為穩壓及吸收突波的保護裝置。
  本研究利用電泳沉積法製備氧化鋅薄膜,並藉由硝酸鉍電解質之添加進行金屬鉍共鍍。探討電泳參數對於鍍層成長特性、化學組成、微結構之影響,以SEM、EDS、XRD分析鍍層的表面形態、元素組成分佈及相變化,量測I-V曲線,探討變阻特性。
  研究結果顯示在電泳沉積氧化鋅時,伴隨著鉍離子電化學還原,在陰極基板析出鉍金屬。鍍層之厚度、鉍金屬含量及鍍層的表面形態,可利用改變電泳製程參數而獲得控制。其中鉍離子部份吸附在氧化鋅顆粒表面共沉積,鉍金屬在燒結中氧化成氧化鉍,藉由此種形態,將導致燒結時形成氧化鋅晶粒被氧化鉍包覆的效果,達到適合做為氧化鋅變阻器之微結構。
  而本研究首次嘗試以電泳沉積氧化鋅共鍍鉍金屬,作為製備氧化鋅變阻器之製程,相較於傳統製程可獲得更適於做為氧化鋅變阻器之
微結構特徵,α值為評估變阻特性之指標,實驗量測之α值在燒結溫度900℃約為10,接近目前以氧化鋅-氧化鉍作為變阻器材料所得範圍(5~10)之最大值。
  In this study, the ZnO coatings co-deposited with metallic Bi coming from electrolyte were fabricated by electrophoretic deposition (EPD). The effect of electrophoretic parameters on the deposit characteristics, such as deposition kinetics, the composition of coatings and microstructure were evaluated by SEM, EDS and XRD. Besides, the measurement of I-V curve has also been conducted to determine the non-ohmic characteristics of the varistor fabricated.
  Experimental results show that the electrophoretic deposition of ZnO particles accompanies the reduction of bismuth ion in the form of bismuth metal onto the cathode substrate at appropriate conditions. The thickness, composition and morphology of the deposited layers can be well controlled by proper selection of deposition parameters. Bismuth metal dispersed homogeneously within ZnO coatings as a result of cathodic reduction of ions from those adsorbed on the surface of ZnO particle. During the liquid phase sintering process, ZnO grains are separated by bismuth oxide layer derived from oxidization of bismuth metal and make it suitable for ZnO varistor.
In this work, for the first time, ZnO varistor is fabricated by combining the EPD of ZnO nanoparticles and the co-deposition of a specific additive from the electrolyte. As verified from the result, the microstructure and composition suitable for ZnO varistor is obtained. By using this process, the α value is about 10 for ZnO sintered at 900℃ for 2 h, which approaches the maximum value for the ZnO-Bi2O3 binary system reported.
總目錄

中文摘要Ⅰ
英文摘要Ⅱ
總目錄III
圖目錄VI

第一章緒論1
1-1 氧化鋅1
1-2 變阻器1
1-3 電泳沉積3
1-4 研究動機與目的4

第二章理論基礎與文獻回顧7
2-1 氧化鋅變阻器7
2-1-1 電壓-電流特性7
2-1-2 微結構9
2-2 電化學沉積10
2-2-1 膠體溶液表面荷電原理12
2-2-2 電雙層14
2-2-3 DLVO 理論15
2-2-4 電泳沉積之原理16
2-2-5 電泳沉積動力學17
2-2-6 電泳沉積之優點及應用18

第三章實驗方法與步驟22
3-1 實驗流程22
3-2 實驗步驟23
3-2-1 化學藥品選用23
3-2-2 電泳懸浮液之配製23
3-2-3 基板23
3-2-4 實驗參數24
3-2-5 冷均壓24
3-2-6 燒結24
3-3 性質量測及分析25
3-3-1 電泳之電流-時間曲線25
3-3-2 掃描式電子顯微鏡分析25
3-3-3 能量分散光譜儀25
3-3-4 X 光繞射分析25
3-3-5 I-V 曲線量測26

第四章結果與討論28
4-1 電泳沉積參數對鍍層厚度之探討28
4-1-1 外加電壓對鍍層成長特性之影響28
4-1-2 電解質濃度對成長特性之影響34
4-1-3 懸浮液濃度對成長特性之影響35
4-2 電解質及懸浮液濃度對鍍層成份之影響40
4-3 XRD 分析熱處理對鍍層結構之影響44
4-4 鉍含量對於表面型態之影響48
4-5 冷均壓對初鍍膜型態及燒結之影響52
4-6 燒結後鍍層微結構觀察57
4-7 電性量測67

第五章結論72

參考文獻74

誌謝81
1. H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting
transparent thin films,” Published by Institute of Physics
Publication, 1995, p.17.
2. J. Koike, K. Shimoe and H. Ieki, "1.5 GHz Low-Loss Surface
Acoustic Wave Filter Using ZnO/ Sapphire Substrate," Jpn. J.
Appl. Phys., 32 (1993) 2337.
3. J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu and M. De Bonte,
“Hybrid processes – a versatile technique to match process
requirements and coating needs”, Surf. Coat. Technol., 113 (1999)
165.
4. D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, "Optical
and electrical properties of R.F. magnetron sputtered ZnO:Al thin
films," Mater. Sci. Eng. B, 52 (1998) 59.
5. S.R. Morrison, " Selectivity in Semiconductor gas sensor ," Sensors
and Actuators, 12 (1987) 425.
6. C. J. Frosch, “Improved Silicon Carbide Varistors,” Bell Lab. Rec.,
32 (1954) 336
7. H. F. Dienel, “Silicon Carbide Varistors: Properties and
Construction,” Bell Lab. Rec., 34 (1956) 407.
8. M. Matsuoka, “Nonohmic Properties of Zinc Oxide Ceramics,” Jpn.
J. Appl. Phys., 10 (1971) 736.
9. F. L. Yuan and H. J. Ryu, “Microstructure of varistors prepared with
zinc oxide nanoparticles coated with Bi2O3,” J. Am. Ceram. Soc., 87
(2004) 736.
10. L. M. Levinson and H. R. Philipp, “The physics of metal oxide
varistors,” J. Appl. Phys., 46 (1975) 1332.
11. Y. Q. Huang, M.D. Liu, Y.K. Zeng, S. B. Liu, “Progress of study on
ZnO thin film and its properties,” J. Inorgan. Mater., 16 [3] (2001)
391.
12. J. Nishino, S. Ohshio, K. Kamata, “Preparation of zinc oxide films
by low-pressure chemical vapor deposition method,” Materials
Research Society Symposium – Proceedings, vol. 363, Chemical
Vapor Deposition of Refractory Metals and Ceramics III, 1995, p
219.
13. Y. Suzuoki, A. Ohki, T. Mizutani, M. Ieda, “Electrical Properties of
ZnO-Bi2O3 thin-film varistors,” J. Phys. D: Appl. Phys., 20 (1987)
511.
14. M. Ieda, Y. Suzuoki, M. Nakagawa, T. Mizutani, “Electrical
properties of ZnO/Bi2O3 two-layer composites,” IEEE Transactions
on Electrical Insulation, 25[3] (1990) 599.
15. Y. Q. Huang, M. Liu, Y. Zeng, C. Li, D. Xia and S. Liu,
“Preparation and properties of ZnO-based ceramic films for
low-voltage varistors by novel sol-gel process.” Mater. Sci. Eng. B,
86 (2001) 232.
16. Y. Q. Huang, M. D. Liu, S. L. Jiang, Y. K. Zeng, C. R. Li, S. B. Liu
and D. X. Zhou, “Preparation and electrical properties of ZnO-glass
ceramic films,” Microelectronic Engineering, 66 (2003) 760.
17. A. R. Boccaccini and I. Zhitomirsky, “Application of electrophoretic
and electrolytic deposition techniques in ceramics processing,” Curr.
Opin. Solid State Mater. Sci., 6[3] (2002) 251.
18. I. Zhitomirsky, “Electrodeposition of composite
ceria-polyethylenimine films,” Surf. Eng., 20[1] (2004) 43.
19. P. Bon, I. Zhitomirsky and J. D. Embury, “Electrochemical
preparation of Ni and Fe hydroxide/oxide films using
polyethylenimine,” Surf. Eng, 20[1] (2004) 5.
20. X. Pang and I. Zhitomirsky, “Fabrication of composite films
containing zirconia and cationic polyelectrolytes,” Langmuir, 20[7]
(2004) 2921.
21. I. Zhitomirsky, “Composite nickel hydroxide - polyelectrolyte films
prepared by cathodic electrosynthesis,” J. Appl. Electrochem., 34[2]
(2004) 235.
22. I. Zhitomirsky and A. Petric, “Electrolytic and electrophoretic
deposition of CeO2 films,” Mater. Lett., 40[6] (1999) 263.
23. R. C. David, “Varistor Ceramics,” J. Am. Ceram. Soc., 82[3] (1999)
485.
24. F. R. Leite, M. A. L. Nobe, E. Longe, J. Mater. Sci., 31 (1996) 5391.
25. I. Zhitomirsky “Cathodic electrodeposition of ceramic and
organoceramic materials. Fundamental aspects,” Advances in
Colloid and Interface Science, 97 (2002) 279.
26. 張有義,郭蘭生編著Duncan J. Shaw 原著, “膠體介面化學入
門(Introduction to colloid and surface chemistry 4/e)”, 高立圖書有
限公司, 1999, p.209。
27. H. Helmholtz, Ann. Phys., 7 (1879) 337.
28. G. Gouy, compt. Rend., 149 (1910) 654.
29. P. L. Chapman, Philos. Mag., 25 (1913) 475.
30. O. Z. Stern, Elektrochem., 30 (1924) 508.
31. L. L. Schramm, “Suspensions: Fundamentals and Applications in
the Petroleum Industry,” Am. Chem. Soc., Washington, 251 (1996) 3.
32. M. N. Rahaman, “Science of Colloidal Processing,” in Ceramic
Processing and Sintering, Ed. by M. N. Rahaman, Marcel Dekker,
New York, 1995, p.146.
33. P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD):
mechanisms, kinetics, and application to ceramics,” J. Am. Ceram.
Soc., 79 (1996) 1987.
34. F. F. Reuss, Memoires de la societe imperiale de naturalists de
moscou, 2 (1809) 327.
35. Z. Zhang, Y. Huang, and Z. Jiang, “Electrophoretic Deposition
Forming of SiC-TZP Composites in a Nonaqueous Sol Media,” E.,
J. Am. Ceram. Soc., 77[7] (1994) 1946.
36. A. Sussman, and T. J. Ward, “Electrophoretic Deposition of
Coatings from Glass-Isopropanol Slurries,” RCA Rev., 42 (1985)
178.
37. P. Sarkar, X. Huang, and P. S. Nicholson, “Structural Ceramic
Microlaminates by Electrophoretic Deposition,“ J. Am. Ceram. Soc., 75[10] (1992) 2907.
38. P. Sarkar, X. Huang, and P. S. Nicholson, “Zirconia/Alumina
Functionally Gradient Composites by Electrophoretic Deposition
Techniques,” J. Am. Ceram. Soc., 76[4] (1993) 1055.
39. C. Y. Chen, S. Y. Chen, and D. M. Liu, “Electrophoretic Deposition
Forming of Porous Alumina Membranes,” Acta Mater., 47[9] (1999)
2717.
40. Y. C. Wang, I. C. Leu, and M. H. Hon, “Kinetics of Electrophoretic
Deposition for Nanocrystalline Zinc Oxide Coatings,” J. Am.
Ceram. Soc., 87[1] (2004) 84.
41. Y. Hirata, A. Nishimoto, and Y. Ishihara. “Forming of Alumina
Powder by Electrophoretic Deposition,” Nippon Seramikkusu
Kyokai Gakujutusu Ronbunshi., 99[2] (1991) 108.
42. A. Degen and M. Kosec, “Effect of pH and impurities on the surface
charge of zinc oxide in aqueous solution,” J. European Ceram. Soc.,
20 (2000) 667.
43. A. Degen, M. Kosec, “Influence of pH and ionic impurities on the
adsorption of poly(acrylic) dispersant onto a zinc oxide surface,” J.
Am. Ceram. Soc., 86 (2003) 2001.
44. G. J. Exarhos, S. K. Sharma, “Influence of processing variables on
the structure and properties of ZnO films,” Thin Solid Films, 270
(1995) 27.
45. X. L. Xu, C. X. Guo, Z. M. Qi. “Annealing effect for surface
morphology and luminescence of ZnO film on silicon,” Chem. Phys.
Lett., 364 (2002) 57.
46. G. M. Safronov, V. N. Batog, T. V. Stepanyuk, and P. M. Fedorov,
“Equilibrium diagram of the bismuth oxide–zinc oxide system,”
Russ. J. Inorg. Chem., 16 (1971) 460.
47. S. Hingorani, D. O. Shah, and M. S. Multani, “Effect of process
variables on the grain growth and microstructure of ZnO-Bi2O3
varistors and their nanosize ZnO precursors,” J. Mater. Res., 10
(1994) 461.
48. J. Wong, “Sintering and varistor characteristics of ZnO-Bi2O3
ceramics,” J. Appl. Phys., 51 (1980) 4453.
49. T. R. N. Kutty, S. Ezhilvalavan, “The effect of aluminosilicate on
the delayed onset of upturn voltages of zinc oxide varistor
ceramics,” Mater. Sci. Eng. B, 47 (1997) 101.
50. M. Matsuoka, T. Masuyama, and Y. Iida, J. Jpn. Soc. Appl. Phys., 39 (1970) 94.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 4. 林正明(2000),「限制理論及其應用--以QCC推動為例」,育達研究叢刊,第一期,第47-61頁。
2. 2. 李宏健(1999),「如何運用限制理論進行持續改善」管理會計,第四九期,第1-20頁。
3. 26. 羅佳斌(2000),「以專案管理建立限制理論思維之排程」,品質月刊,第三八期,第47-50頁。
4. 23. 鄭同伯(2003),「破解WLAN中繼器疑慮」,網路通訊雜誌,第一四三期,第49-54頁。
5. 21. 楊鳳美(2003),「行銷管理系列--網路發展與消費者生活型態」,藥業市場雜誌,第九二期,第24-26頁。
6. 17. 張逸豪(2003),「3G行動終端無線鏈路控制與媒體存取層技術」,網路通訊雜誌,第一四O期,第4-10頁。
7. 13. 高端訓(2002),「高科技產品品牌行銷觀點」,動腦,第三二O期,第56-59頁。
8. 12. 孫妙雪(2003),「限制理論對管理會計之衝擊」,企業管理學報,第五二期,第1-25頁。
9. 11. 孫妙雪(2003),「限制理論的重要啟示--達成目標不是靠運氣」,臺灣經濟金融月刊,第三九期,第21-28頁。
10. 10. 孫妙雪(2001),「限制理論應用於產業經營管理之研討」,臺灣經濟金融月刊,第三七期,第41-54頁。
11. 7. 阿丹(2003),「數位行銷的善與惡」,網路通訊雜誌,第一三九期,第120-123頁。
12. 6. 邱義智(2003),「電子商務:行銷通路新戰場」,能力雜誌,第五六四期,第118-121頁。
13. 5. 林正明(2001),「平衡計分卡應用探討--依限制理論思考過程」,育達研究叢刊,第二期,第116-143頁。