(34.239.150.57) 您好!臺灣時間:2021/04/18 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王詠賢
研究生(外文):Yung-Shien Wang
論文名稱:噴覆成型與傳統鑄造多元合金CuCoNiCrAl0.5Fe之微結構與性質的探討
論文名稱(外文):The study of Spray-Formed and Cast CuCoNiCrAl0.5Fe multi-elements alloy in microstructure and mechanical properties
指導教授:曹紀元
指導教授(外文):C. Y. Tsao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:97
中文關鍵詞:噴覆成型多元合金
外文關鍵詞:spray forming processmulti-elements alloy
相關次數:
  • 被引用被引用:3
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
目前為止,合金設計以及合金選擇之理念仍未脫離以一種元素或化合物為主的觀念;有鑑於前述傳統合金設計理念顯然限制了合金成分的自由度,因而可能限制特殊微結構及性能的發展,於是新的設計觀念被提出以突破傳統上的限制。在此新觀念下設計的合金“多元合金“組成基本上無主要元素。
噴覆成型製程(SFP)具有快速凝固之特性,故經由此製程所製得之材料具有晶粒尺寸小、減少偏析等特性;本研究主要以銅、鈷、鎳、鉻、鋁及鐵六種不同元素組成的多元合金為實驗材料。比較由傳統鑄造與噴覆成型製程對材料之微結構與機械性質之影響。研究結果鑄造材的晶粒大小為270∼1000μm且結構為樹枝狀結構,而噴覆材晶粒大小為2∼7μm,結構為細小的球狀晶粒,不僅大大的細化了晶粒尺寸同時也減少了銅元素的偏析情形。
機械性質部分,噴覆材與鑄造材多元合金在高溫下具有相當良好的強度,強度可維持到1000℃以上,無論巨觀硬度(HRC)或是微觀硬度(MHv)皆與室溫下幾乎相同,在1050℃持溫12小時後噴覆材與鑄造材的硬度皆有明顯下降且鑄造材下降幅度皆大於噴覆材,鑄造材微觀硬度(MHv)甚至低於噴覆材,因此噴覆材高溫穩定性質較佳。三點抗折試驗部分,觀察其破斷面微結構,發現噴覆材晶粒內部有許多韌窩(dimple)結構,鑄造材破斷面則沿著樹枝間偏析處產生裂縫,其破斷面屬於脆性破斷,兩者的破斷應力皆為370kgf,計算其破斷韌性值,噴覆材為256.8kgf-mm、鑄造材為70.3kgf-mm,結果顯示噴覆材的韌性較鑄造材高,約為鑄造材的3.6倍。
In tradition, the development of an alloy system is almost based on a major element. It will limit the freedom to design alloys、microstructures and properties. Therefore ,the 6-component alloy system is expected to break the conventional design.
The alloys with reduced grain size and less segregation can be produced via the spray forming process, in which rapid solidification condition is achieved. The high entropy alloy used in this study consists of six elements, including Cu, Co, Ni, Cr, Al and Fe. The influence of process parameters on microstructure and mechanical properties of either the as-spray-formed or the as-cast billets were also studied. The grain size of as-spray-formed billet was reduced to 2-7 μm with round shape, while the grain size of conventional as-cast billet was about 270-1000 μm with dendritic structure. Therefore, spray forming process can not only refine the structure but also eliminate the segregation of copper element found in the as-cast one.
目錄
表目錄
圖目錄
中文摘要 1
英文摘要 2
第一章 序論 4
第二章 基礎理論 8
2.1 非晶質合金發展與應用 8
2.2 非晶質合金製程 10
2.3 非晶質合金的優異特性 11
2.4 非晶質合金形成理論 12
2.5 影響非晶質合金形成因素 13
2.5.1 玻璃形成能力 13
2.5.2 冷卻速率 14
2.5.3 合金原子間的鍵結特性與晶體
結構特性14
2.5.4 約化玻璃轉換溫度 15
2.5.5 共晶成分 15
2.6 多元合金發展 16
2.7 噴覆成型製程理論 18
第三章 實驗方法 22
3.1 實驗目的 22
3.2 實驗材料 22
3.3 實驗流程 23
3.4 噴覆成型多元合金 24
3.5 實驗分析 25
3.5.1 多元合金之微觀組織分析 25
3.5.2 結晶結構分析 27
3.5.3 巨觀成分分析 27
3.5.4 熱性質分析 27
3.5.5 機械性質分析 28
3.5.6 其它分析及設備 29
第四章 實驗結果與討論 30
4.1 製程參數優劣對SFP billet 的影響 30
4.2 噴覆成型與傳統鑄造製程顯微結構與相結構分析 31
4.3 機械性質分析 40
4.3.1 硬度測試分析 40
4.3.2 高溫穩定性 44
4.3.3 三點抗折之破斷面分析 46
第五章 結論 49
第六章 參考文獻 51
1.P. K. Everentt and R. J. Arsenault,“ Metal Matrix Composite ”,Process and Interface, Academic Press. Inc., San Diego, CA.(1991)

2.H. J. Rack,“ Powder Metallurgy Composites ”, The Metallurgical Society, Warrendale, PA, p.155(1988)

3.N. F. Kazakov,“ Diffusion Bonding of Material ”,translated by B. Kuznetsov, Mir, Moscow, Pergaman,New York. (1985)
4.G. Garmong, N. E. Paton and A. S. Argon: Metall. Trans., vol.6A, p.1269.(1975)
5.B. Derby and E. R. Wallach: Matel. Sci., vol.18, p.427(1984)
6.P. Rohatgi:Metal Handbook on Casting ,vol.15, 9th ed., ASM International, Metals Park, Ohio, p.840 (1988)
7.J.H.Westbrook: Metall. Trans. A, vol.8A, p.1327(1989)
8.G. Sauthoff: Metallkde.,vol.80, p. 337(1989)
9.S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler:High Temperature Aluminides and Intermetallics, p.329(1989)
10. P. Duwes:Trans. Am. Soc. Metals, vol60, p607(1967)
11. H. S. Chen, H. J. Leamy and C. E. Miller: Preparation of Glassy Metals,Annual Review of Materials Science,Vol 10, p.363(1980)
12. A. R. E Singer: Principle of Spray Rolling of Metals, Metals and Materials, 4, 6, p.246(1970)
13. A. R. E Singer: Aluminum and Al-alloy Strip Produced by Spray Deposition and Rolling, J. Inst. Met., 100, p. 185(1972)

14. R. W. Evans, A. G. Leatham and R. G. Brooks: Osprey Preform Process, Powder Metallurgy, 28,1, p.13(1985)
15. E. J. Lavernia, G. Rai and N. J. Grant : Liquid Dynamic Compaction of a Rapidly Solidified High Strength Aluminum Alloys, Int. J. of Powder Metall., 22, 1, p.9(1986)
16. J. L. Estrada and J. Duszczyk : Characteristics of rapidly solidified Al-Si-X performs produced by the Osprey process, Journal of Materials Science,25,2B, p.1381(1990)
17. Swe-Kai Chen,:Current Status of Investigation in Metallic Glasses,Mining and Metallurgy,Vol.43,No2, p.114.
18. J.Kramer,Z.Phys.,Vol 106, p.639. (1937)
19. J.kramer.Annln Phys., Vol37, p.19(1934)
20.A.Bremer,D.E.Couch and E.K.Williams, J.Res.Natn.Bur.Stand., Vol 44 , p 109(1950)
21. P.Duwes,Trans.Am.Soc.Metals,Vol 60, p607. (1967)
22. 程天一,張守華編著,“快速凝固技術與新型合金”,宇航出版社. (1990)
23. H.W.Kui,A.L.Greer and D.Turnbull,“Formation of Bulk Metallic-Glass by Fluxing ”,Applied Physics Letters,Vol.45,Iss 6, p.615(1984)
24. A.Inoue and T.Masumoto,U.S.Patent No. 5032196,Japanese Patent 07-122120.
25. A.Inoue and T.Zhang,“Materials Transactions JIM ”,Vol 40,p 301. (1999)

26. A.Inoue,“Bulk Amorphous Alloys ” ,Trans Tech Publications,Vol 2, Zurich, p.28.(1999)
27. D.E.Polk and B.C.Giessen,“Rapid Solidification Technology Source Book ”,ASM,Metals Park,Ohio. (1983)
28. F.E.Luborsky,“Amorphous Metallic Alloys ”, Butterworths Monographs in Materials, London, p.19. (1983)
29. A.Inoue,T.Zhang and T.Masumoto,“Glass-Forming Ability of Alloys ”,Journal of Non-Crystalline Solids, Vol 156, p.473. (1993)
30. H.wang,R.Luck and B.Predel:Thermodynamic Calculations in Quaternary Transition-Metal Systems,Journal of Alloys and Compounds,Vol 191,Iss,pp.43-49(1993)
31. A.Greer,“Confusion by Design ”,Nature,Vol 366,No. 25 november, p.303(1993)
32.Chen, C. P.* and Tsao, C.-Y. A.,“Response of Spray-Deposited, Stirred-Cast and Conventional Cast Pb-Sn Alloys to Deformation in the Semi-Solid State ”, J. Materials Sci. U. S. A. (1995)
33.Tsao, C.-Y. A., “Spray Forming – An Advanced Materials Processing ”, Austria Research Center, Seibersdorf, Austria. (2000)
34.Guo, M.-L. T., Chiang, C.-H., Tsao, C.-Y. A.,“Microstructure and Wear Behavior of Spray-Formed and Conventionally Cast Rolls of 18Cr-2.5Mo-Fe Alloy ”,Proc. Of SDMA , Bremen, Germany. (2000)
35. Chen, Y. M., Su, Y. H., Lin, R. W. and Tsao, C.-Y. A., “Modeling of Atomization Rate During Gas Atomization ”, Acta Materialia, 46, 3, U. S. A., p.1011 (1998)

36. Karl-Ulrich Kainer; Thorsten Ebert.,“Microstructure and Mechanical properties of spray-formed Mg alloys ” , Spray Deposition and Melt Atomization, 26-28. June, 2000, Bremen, Germany, p.341(2000)
37. Grant, N. J.,: Spray Forming in , Progress in Material Science, 39, p.497(1995)
38. Oguchi, M ; Inoue, A ; Yamaguchi, H ; Masumoto, T: Production of Aluminum-Based Amorphous Sheets With Large Thickness by a Supercooled Liquid-Quenching Method, Journal of materials science letters, 10, (5), 1 Mar.,p.289(1991)
39. Chiang , Chun-Hsien*, Wang , J. L*, Su, Y. H*, and Tsao, C.-Y. A.,“Structure Evolution of Spray-Formed Al Alloys in the Semi-Solid State ”,Proc. of 4th Int'l Conf. on Spray Forming, Baltimore, U.S. A. (1999)
40. 黃國雄,葉均蔚,陳瑞凱,“等莫耳比多元合金研究”,國立清華大學材料科學工程研究所碩士論文. (1996)
41. 賴高廷,葉均蔚,陳瑞凱,“高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論文. (1998)
42. 許雲翔,葉均蔚,陳瑞凱,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文. (2000)
43. 洪育德,葉均蔚,陳瑞凱,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文. (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔