(3.215.183.251) 您好!臺灣時間:2021/04/23 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴學斌
研究生(外文):Shyue-Bin Dai
論文名稱:利用拉曼散射技術研究鐵電材料之相變化、摻雜效應與薄膜之結晶化
論文名稱(外文):Studies of Phase Transition and Doping Effect of Ferroelectric Materials and Crystallization of Thin films by Raman Scattering Technology
指導教授:黃正雄黃正雄引用關係莊陽德莊陽德引用關係
指導教授(外文):Jenn-Shyong HwangYang-Der Juang
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:140
中文關鍵詞:鈮酸鋰鉀氧化鋅鈦酸鉛鉭酸鉀相變化摻雜效應結晶化
外文關鍵詞:LixK1-xNbO3ZnOPbTiO3LiTaO3phase transitiondoping effectCrystallization
相關次數:
  • 被引用被引用:6
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本論文以拉曼散射技術研究鐵電材料:鈮酸鋰鉀(LixK1-xNbO3)、鈦酸鉛陶瓷((Pb0.88-xCaxSm0.02)(Ti0.98Mn0.02)O3(x=0.11-0.17))的相變化與摻雜效應,以及鈮酸鋰薄膜、鉭酸鋰薄膜的結晶化情形。其中鈮酸鋰鉀、鈦酸鉛陶瓷的樣品是由傳統的粉末研磨及高溫瑕燒所製成,鈮酸鋰薄膜、鉭酸鋰薄膜則是利用溶膠-凝膠法制成。同時本論文並以X-RAY、介電常數量測、DSC、SEM等儀器研究樣品之物理性質。

在鈮酸鋰鉀的研究中發現,鈮酸鉀摻雜微量鋰(LixK1-xNbO3) ( x=0.01, 0.03, 0.05 )之結構幾乎和純的KNbO3是一樣的,即可使其在降溫過程中結構自正交晶相轉變為三方晶相,發生相變的溫度大約在150K。在升溫的過程中亦可使其結構自三方晶相轉變為正交晶相,發生相變的溫度大約在190 K。摻雜1%的鋰於KNbO3中即可比純的KNbO3相變溫度(降溫:210K,升溫:265K)降低約60K。

(Pb0.88-xCaxSm0.02)(Ti0.98Mn0.02)O3(x=0.11-0.17)的ferroelectric-paraelectric(F-P)相變化情形,係隨著鈣含量的增加使F-P變遷的相變溫度亦隨之降低,此為鈣原子的摻雜量影響了鈦原子和氧原子之間的振動所造成的,這個現象可以從拉曼光譜圖中的部分振動模式發生簡併現象而得知;同時在X-Ray的繞射圖中鈣原子的摻雜量影響到了各樣品的晶格常數,當鈣的摻雜量達到最大時(X=0.17)它的晶格異向性亦是最低的。

利用sol-gel的方法在矽晶片上成長鈮酸鋰薄膜、鉭酸鋰薄膜,並透過X-Ray繞射及拉曼光譜來檢定薄膜品質的好壞,發現燒結溫度在400℃以上時,鈮酸鋰晶格已漸漸形成。當溫度達到750℃以上即可形成與鈮酸鋰粉末晶體相近的晶格結構。而燒結溫度在500℃以下時鉭酸鋰薄膜形成非晶系的結構,燒結溫度在600℃以上時,鉭酸鋰晶格已漸漸形成。當溫度達到750℃時即可形成與鉭酸鋰粉末晶體相近的晶格結構。因之,利用sol-gel的方法在矽晶片上成長鈮酸鋰薄膜、鉭酸鋰薄膜,二者最佳的燒結溫度是750℃,此成長溫度可使薄膜品質呈現最佳化的結構。
This study investigates the phase transitions of ferroelectric materials by Raman scattering. The doping concentration effect on the phase transitions
of LixK1-xNbO3 and (Pb0.88-xCaxSm0.02)(Ti0.98Mn0.02)O3, and the crystallization of both LiNbO3 thin film and LiTaO3 thin film were studied. LixK1-xNbO3 and (Pb0.88-xCaxSm0.02)(Ti0.98Mn0.02)O3 were prepared by a conventional procedure for preparing ceramics. Appropriate amounts of ceramics were ball-milled and synthesized by calcining at high temperature. Both LiNbO3 thin films and LiTaO3 thin films were prepared by the sol-gel method. X-Ray diffraction, measurements of dielectric constants, and DSC and SEM instruments were used to study the physical characteristics of the samples.

Lightly Li doped LixK1-xNbO3 exhibits a structure almost identical to that of pure KNbO3 in room temperature, when the mole fractions of Li were 0.01, 0.03, or 0.05. Low-temperature Raman spectra of Li0.01K0.99NbO3 ceramic showed that a rhombohedral-orthorhomic phase transition occurred at around 150K during cooling and at 190K during heating process. The phase transition temperature of Li0.01K0.99NbO3 was lower than that of pure KNbO3 by approximately 60K. A KNbO3 phase transition occurred at about 210K during cooling and 265K during heating. The lower in phase transition temperature is associated with the effect of the 1% doping of Li.

The (Pb0.88-xCaxSm0.02)(Ti0.98Mn0.02)O3(x=0.11-0.17) ceramic transition temperature decreases for the ferroelectric to paraelectric phase transition( F-P transition ) as the mole fraction x (the Ca-doped amount) increases. The mole fraction x( the amount of Ca-doped ) affects the vibration of the titanium( Ti ) and oxygen( O ) atoms and results some of the Raman modes to degenerate. X-Ray diffraction is used to determine the lattice constant of each sample. The lattice is most isotropic when the amount of Ca dopant is greatest (x=0.17).
.
LiNbO3 thin films and LiTaO3 thin films were fabricated on Si substrates using the sol-gel method. The qualities of these thin films were examined by X-Ray diffraction and Raman scattering. As the sintering temperature was increased above 400 0C, the LiNbO3 thin film formed gradually. When the sintering temperature was 7500C, the lattice structure of the LiNbO3 thin film was the same as that of the sol-gel powder, LiNbO3.

LiTaO3 thin film was amorphous at a sintering temperature below 5000C. As the sintering temperature was above 6000C, the LiTaO3 thin film structure of LiTaO3 was formed gradually. When the sintering temperature was 7500C, the lattice structure of the LiTaO3 thin film was almost the same as that of the sol-gel powder, LiTaO3.
In summary, the sol-gel method was used to prepare the LiNbO3 thin film and the LiTaO3 thin film on Si substrates. The ideal sintering temperature was 7500C, at which thin film of the highest quality were obtained. Raman scattering spectroscopy has been proven to be a powerful technique to study the mechanism of phase transition.
目 錄
中文摘要 ……………………………………………………3
英文摘要 ……………………………………………………5
誌謝 ……………………………………………………8
目錄 ……………………………………………………9
表目錄 ……………………………………………………10
圖目錄 ……………………………………………………11
符號 ……………………………………………………15
第一章 緒論 ………………………………………………………16
第二章 拉曼光譜原理 ……………………………………………29
第三章 鋰對鈮酸鉀之摻雜效應與低溫之相變研究 ……………50
第四章 摻雜鈣對鈦酸鉛陶瓷相變之影響 ………………………86
第五章 鈮酸鋰薄膜的拉曼光譜研究 ……………………………101
第六章 以溶膠-凝膠方法研究鉭酸鋰薄膜的結晶化 …………112
第七章 結論 ………………………………………………………129
參考文獻 …………………………………………………………… 132
參考文獻
1.彭成鑑, “ 強介電薄膜材料技術專題導言 ” , 黃文正、呂宗昕, “ 強介電陶瓷材料與其應用簡介 ”, 工業材料, 155期, 121頁, 88年11月.
2.吳朗,“ 電子陶瓷-壓電 ”全欣科技圖書公司, 83年12月.
3.Charles Kittel, Introduction to Solid State Physics, Seventh Edition, WILEY.
4. F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham), Vol. 1037, P 16.
5.E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).
6.M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).
7.C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).
8.K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
9.黃文啟,“光調制光譜及拉曼光譜研究光電材料之表面特性”,成功大學物理研究所博士論文, 90年4月.
10.李明知“拉曼散射及其應用簡介”科儀新知,14卷五期,82.4
11.李匡邦“光譜化學分析”國立編譯館,86.9.
12.N.B.Colthug, L.H.Daly, and S.E.Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston,(1990)
13.傅以勇“苯二甲藍蒸镀在金屬薄膜之表面強化拉曼散射與觸媒反應之研究”, 成功大學物理研究所碩士論文, 77年1月.
14. B. T. Matthias and J. Remeika, Phys. Rev. 82. 727, (1951).
15. N de Mathan, E Prouzel, E Husson, and H Dexpert. J. Phys. Condens. Matter. 5. 1261, (1993).
16. R.Coms, R.Lambert, and A.Gvinier, Acta Crystallogr. A.26. 244, (1970).
17.Edwardson. P. J. Phys. Rev. Lett, 63. 55,(1989).
18.Sokoloff. J. P, Chase. L. L and Rytz. D. Phys. Rev. B. 38. 597,(1988).
19. M. D. Fontana, G. Metrat, J. Servoin, and F. Gervais, J. Phys. C: Solid States Phys. 16, 483 (1984).
20. A.S.Chavs, F.C.S Barreto, R.A.Nogueira, and B.Zeks, Phys. Rev B. V13, 207 (1976).
21. R.Coms, R.Lambert, and A.Gvinier, Solid State Commun. 6, 715 (1968).
22. M. D. Fontana, A. Ride, G. E. Hugely, and C.Carabatos-Nedelec, J.Phys.C: Solid States Phys. 21 (1988) 5853; Phys Status Solidi B. 147, 441, (1988)
23. M.P.Fontana, C. Razzetti, Solid State Commun. V. 17, 377-380 (1975)
24. Winter. F.X, Wiesendanger. E, Claus. R, Phys. Status.Solidi (b). 64, 95 (1974)
25. Y.D.Juang, Solid State Commun. 120, 25, (2001).
26. A.M.Quittet, Phys Rev B. V14, 5068, (1976).
27. Y. D. Juang, S. B. Dai, Y. C. Wang, W. Y. Chou, J. S. Hwang, M. L. Hu and W. S .Tse, Solid state Communications. V111, p. 723-728. 24. August (1999)
28. S.D Ross, J.Phys C3, 1785 (1970)
29. J.F.Scott, Phys. Rev B. V15. 2826 (1977).
30. R.Currat, R.Comes, B.Dorner, and E. Wiesendanger. J. Phys. C7, 2521. (1974)
31. A.W.Hewat, J.Phys.C: Solid State Phys. 6. 2559. (1973).
32. D.G.Bozinis, J.P.Hurrel, Phys. Rev. B. V13. 3109. (1976)
33. A.C.Nunes, J.D.Axe, G.Shirane, Ferroelectrics. 2. 291. (1971)
34. A.Huller, Phys.220. 145. (1969)
35. T.Fukumoto, A.Okamoto, T.Hattor, A.Mitsuihi, T.Fukuda, Solid State Commun. 17.427 (1975)
36A.M.Quittet, M.Lambert, Solid State Commun. 12. 1053 (1973)
37. E.Wiesendanger, Ferroelectrics. 6.263 (1974)
38.G.Burns, Phys. Rev. B10, 1951 (1974)
39. L.Merten, Phys. Status Slidi 25,125 (1968)
40. G.Burns, Phys. Lett. A 43, 271 (1973).
41. R.Comes, G.Shirane, Phys. Rev.B 5, 1886 (1972)
42. G.Shirane, R.Newnham, R.Pepinsky, Phys. Rev. V96, 581 (1954)
43. H. Takeuchi, S. Jyomura, E. Yamamoto and y. Ito, J. Acoust. Soc. Am. 72, 1114 (1982).
44. K. Takeuchi, D. Damjanovic, T. R. Gururaja, S. J. Jang and L. E. Cross, Proc. Of the Sixth International Symposium on Applications of Ferroelectrics, IEEE 402 (1986).
45. J. ShenglinZ. Xuli, W. Xiaozhen and Xianghong. Piezoelectric and Acoustics 17, 26 (1995).
46. S.Ikegami, I.Ueda, T. Nagata, Electromechanical properties of PbTiO3 ceramics containing La and Mn, J.Acoust. Soc. Am. 50(1971) 1060-1066.
47. T. Takahashi, Lead titanate ceramics with large piezoelectric anisotropy and their application, Ceram. Bull. 69, 691-695 (1990).
48. J.N.Kim, Temperature behavior of dielectric and piezoelectric properties of samarium doped lead titanate ceramics, IEEE Trans. Ultrason.Freq.Contr. 36 (1989).
49. W.R.Xue, Effect of Calcia additions on the electromechanical properties of Samarium-modified lead titanate ceramics, in Proceeding of the 1995 IEEE ISAF, pp. 101-104, (1995).
50. S. Ikegami, Ueda and T. Nagata, J. Acoust. Soc. Am. 50, 1060 (1971).
51. T. Takahashi, Ceram. Bull. 69, 691 (1990).
52. Sheng-Yuan Chu, Chia-Hsin Chen, Effect of calcium on the piezoelectric and dielectric properties of Sm-modified Pbtio3 ceramics. Sensors and Actuator A 89 210-214 (2001).
53.孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑, ‘儀器分析’, 全威圖書公司, 91. 7.
54.林敬二, ‘儀器分析’, 亞美圖書公司, 91. 7.
55.B.D.Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Reading, (1978)
56. J.M.Schultz, Diffraction for Materails Scientists, Prentiu-Hall Inc., Englewood Cliffs, (1982)
57.Gerald Burns, Powder Raman Spectra:Application to displacive ferroelectrics. Mat. Res. Bull. Vol. pp923-930, (1971).
58. Gerald Burns, Bruce A. Scott, Lattice Modes in Ferroelectric Perovskites:PbTiO3. Phys. Rev. B V7 number7 (1973)
59. Properties of Lithium Niobate, EMIS Datareviews Seriers, No. 5 (1989).
60. R. C. Baumann, T. A. Roast, and T. A. Rabson, J. Appl. Phys. Lett. 62, 946 (1993).
61. A. A. Wernberg, H. J. Gysling, and G. Braunstein, J. Cryst. Growth 140, 57 (1994).
62. R. A. Betts and C. W. Pitt, Electron. Lett. 21, 960 (1985).
63. A. Yamada, H. Tamada, and M. Saitoh, Appl. Phys. Lett. 62, 2848 (1992).
64.Y. Shibata, Y. Kanno, K. Kaya, M. Knai, and T. Kawai, Jpn. J. Appl. Phys. 34, L320 (1995).
65.S. H. Lee, T. K. Song, T. W. Noh, and J. H. Lee, Appl. Phys. Lett. 67, 43 (1995).
66.J. Gonzalo, C. N. Afonso, J. M. Ballesteros, A. Grosman, and C. Ortega, J. Appl. Phys. 82(6), 3129 (1997).
67. K. Nashimoto, and M. J. Cima, Materials letters 10, No. 8, 348 (1991).
68. S. Hirano, T. Yogo, K. Kikuta, Y. Isobe an S. Ono, J. Mater. Sci. 28, 4188 (1993).
69. H. Nam and Y. K. Park, D. H. Won, and K. No, J. Mater. Res. V9, No. 4, 980 (1994).
70. J. G. Yoon, S. Y. Kim, and S. I. Kwun, Ferroelectrics, 152, 207 (1994).
71. K. Terabe, N. Iyi, K. Kitamura, and. Kimura, J. Mater. Res. V. 10, No. 7, 1779 (1995).
72. Kanovskaya.M.I, Turevskaya.E.P, Leonov.A.P, J. Mater.Sci, 23, 395(1988)
73. Parttlow.D.P, Gergi.J, J. Mater. Res, 2(5), 595(1987)
74. Ono’s. S, Hiranos. S, J.Am.Cream. Soc.80(11),2869(1997)
75.張一兵、翁文劍、杜丕一、沈鴿、韓高榮、葉志鎮, Journal of Chinese Creamic Society.V30, 230(2002)
76.Bouquet.V, Longo.E, Lette.E.R, J.Mater.Res.14(7),3115(1999)
77.Hirano.S, Kato.K, J.Non-Crys Sloids..100,538(1988)
78.Kauftherr.N, Eighorst.D.J, Payne.D.A, J.Vac.Sci.Tech.A14(2), 299 (1996)
79.A.Rauber, in Current Topics in Materials Science, edited by E.Kaldis(North-Holland Publishing Company, Amsterdam, , Vol.1. P481, (1978)
80R.Ramesh, A. Inam, W.A.Bonner, P.Englad, Appl.Phys.Lett.55, 1138(1989)
81. W.D. Johnston, JR. Phys. Rev. B, 3494 (1970).
82.R.F.Schaufele, M.J.Weber, Phys.Rev.152, 705(1966)
83.A.S.Barker Jr, R.Loudon, ibid.158, 433(1967)
84.A.Jayarman, A.A.Ballman, J.Appl.Phys.60, 1208(1986)
85.J.M.Jehng, I.E.Wachs, Chem.Mater.3, 100(1991)
86. Casson JL, Applied Optics, 41(30): 6416, Oct 20, (2002).
87. S.C. Abrahams, J.L. Bernstein, J. Phys. Chem. Solid. 28, 1685(1967).
88. A.S.Baker, Jr and R, Loudon, Phys. Rev. 158, 433(1967).
89 W.D.Johnson, Physical. Rev. 168. Number 3. 15 April (1968).
90. A.F. Penna, Physical Rev. B. V13, Number 11, 1. June (1976).
91. Biing-Yow. Wu, A.S.T.Ching, Chinese Journal of Materials Science. V28. 3, 169 (1996)
92. T.Yoko, A.Yuasa, K. Kamlya, S. Sakka, J.Electrochem. Soc, 138(8), 2279(1991).
93. K.A. Vorotilow, E.V.Oiova, V.I.Petrovsky, Thin Solid Films. 207, 180(1992).
94. J. I. Goldstein, C. Fiori, D. C. Joy, E. Lishin, P. Echlin and D. E. Newbury, Scanning Electron Microscopy and X-Ray Microanalysis. New York:Plenum Press (1981)
95. J. J. Hren, Introduction to Analytical Electron Microscopy. New York:Plenum Press (1979)
96. J.W. Edington, The Operation and Calibration of the Electron Microscopy, London: Macmillan (1974)
97. J. I. Goldstein and H. Yakowitz, Practical Scanning Electron Microscopy, New York: Plenum Press (1975)
98. Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists //Joseph I. GoldsteinNew York: Plenum Press, (1981)
99. Constantine Raptis, Physical Rev. B. V38, Number 14, 15. Nov. (1988)
100. I. P. Kaminow, W.D. Johnston, J. Phys. Rev. 160, 519(1967)
101. A.F.Penna, A.Chaves, P.da R.Andrade, S.P.S.Porto, Phys.Rev.B.V13, 4907 (1976)
102. A.S.Barker, Jr, A.A.Ballman, J.A.Ditzenbarger, Phys.Rev.B.2, 4233 (1970)
103. R.Loudon, Adv.Phys.13, 423 (1964)
104. W.D.Johnston, Jr, I.P.Kaminow, Phys.Rev.168, 1045 (1968)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔