跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李鈞耀
研究生(外文):Jing-Yao Lee
論文名稱:以光調制光譜研究砷化銦鋁表面-本徵-P+結構的表面性質
論文名稱(外文):Photoreflectance Studies of the Surface Property of InAlAs Surface-Intrinsic-P+ structures
指導教授:黃正雄黃正雄引用關係
指導教授(外文):Jenn-Shyong Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:54
中文關鍵詞:表面態砷化銦鋁光調制光譜
外文關鍵詞:photoreflectanceInAlAssurface state
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
  光調制光譜具有非接觸性及非破壞性的特點,以及寬廣的操作溫度、抑制背景效應等優點,是研究半導體材料和半導體微結構的光電特性的一項普遍及有力的工具。本論文將以光調制光譜研究與基板晶格匹配的In 0.52Al0.48As表面-本徵-P+ (SIP+)結構和表面-本徵-N+ (SIN+)結構的光電特性,如內建電場、表面勢壘、表面費米能階及表面態密度等等。
  論文中的第一部分,利用光調制光譜研究In 0.52Al0.48As表面-本徵-P+ (SIP+)結構的樣品,在不同頂層厚度或不同緩衝層摻雜濃度下的表面費米能階。從表面費米能階隨著頂層厚度及緩衝層摻雜濃度的變化裡,可以了解某些載子的動力行為。
  論文的第二部分是量測不同激發光強度下的PR光譜,根據熱游子輻射理論和電流傳輸理論,從PR訊號的強度隨著激發光強度的變化中,求得樣品的表面勢壘高度和表面態密度。
  論文的第三部份測量樣品於不同溫度下的PR光譜,從PR光譜中的FKOs求得樣品的內建電場和表面勢壘高度,再利用表面勢壘高度隨溫度的變化,可以決定樣品的費米能階和表面態密度的分佈,所得到的結果和變化激發光強度所得到的結果是相符合的。最後比較SIP+和SIN+結構的樣品,探討載子的動力行為以及形成表面態的機制。此外比較SIP+和SIN+的結果,發現SIN+的費米能階距導帶的能量差加上SIP+的費米能階至其價帶的能量差,恰為半導體材料In 0.52Al0.48As的能隙。
  Modulation spectroscopy of Photoreflectance (PR) is widely used to study and characterize bulk semiconductors and semiconductor microstructures. PR is particularly useful for characterizing devices , since it is not only nondestructive and contactless , but can also be performed in a variety of transparent ambients and over a broad range of temperature. In this thesis PR was employed to investigate the electro-optic properties such as built-in electric field, surface barrier height and surface state densities etc.., for series of lattice matched InAlAs surface-intrinsic-N+ (SIN+) andsurface-intrinsic-P+ (SIP+) structures.
  In the first part of this thesis, we used PR to investigate the surface Fermi levels of a series of lattice-matched In0.52Al0.48As surface-intrinsic-P+ structures having different undoped thickness and/or different doping concentrations. From the variation of Fermi level as a function of undoped thickness and doping concentration, some dynamic properties of the carries on surface can be understood.
  In the second part of this thesis, PR spectra were measured under various pump beam intensities. Based on the thermonic emission theory amd current-transport theory, the surface state densities as well as surface barrier heights were determined from the dependence of the PR intensity or the pump beam power.
  In the third part of this thesis, PR spectra were measured at various temperatures. Built-in electric field and surface barrier height were derived from the Franz-Keldysh oscillations (FKOs) in the PR spectra. Surface state density and surface Fermi level were then determined from the surface barrier height as a function of temperature. Results from different approaches are compatible and comparison in the results of SIN+ and SIP+ and reveal the mechanism of the surface states.
  In addition, by comparing the results from SIN+ and SIP+ structure. We found that the energy from the surface Fermi level to the conduction band edge at surface in SIN+ structure, plus the energy from the surface Fermi level to the valence band edge at surface equivalent the band gap energy of the semiconductor material In0.52Al0.48As.
第一章緒論… … … … … … … … … … 1
第二章光調制光譜學的理論… … … … … … … 4
第2-1節光調制光譜… … … … … … .8
2-1-1 低電場調制… … … … … .8
2-1-2 Franz-Keldysh 振盪… … … . .10
第2-2節光調制的過程… … … … … … .14
第2-3節譜線的擬合… … … … … … .15
第三章實驗儀器裝置… … … … … … … … 17
第四章砷化銦鋁表面性質的研究… … … … … ........21
第4-1節實驗所量測的樣品… … … … ..21
第4-2節實驗的原理與過程… … … … ..24
4-2-1 不同激發光強度下的PR 譜線 … … … … … … … … .24
4-2-2 不同溫度下的PR 譜線… … … … … … … ..... ...39
第五章結論… … … … … … … … … … … … 48
參考文獻… … … … … … … … … … … ..50
1. See, for example, K. onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401(1986)
2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444(1986)
3. R. Dingle, W. Wiegman, and C. H. Henry, Phy. Rev. Lett. 33,827(1974)
4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid
State Commu. 37,219(1981)
5. D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, J. Appl. Phys. 84,
2138(1998)
6. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80(1985); R. D. Dupuis, R.C.
Miller and P. M. Petroff, Mat. Letts. 3,398(1985)
7. J. S. Hwang, W. Y. Chou, M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys.
82, 3888(1997)
8. M. D. Pashley, K. W. Haberern, R. M. Feenstra and P. D. Kirchner, Phys. Rev.
B48, 4612(1993)
9. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58,
1429(1987)
10. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151(1995)
11. C. M. Lai, F. Y. Chang, C. W. Chang, C. H. Kao, H. H. Lin, G. J. Jan and
Johnson Lee, Appl. Phys. Lett. 82, 3895(2003)
12. X. Yin, H-M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G.
D. Pettit, and J. M. Woodall, J. Vac. Scl. Technol. A10, 131(1992)
13. Weimin Zhou, M. Dutta, H. Shen, J. Pamulapati, Brian R. Bennett, Clive H.
Perry, David W. Weyburne, J. Appl. Phys. 73, 1266(1993)
14. T. Kanata, M. Matsunaga, H. Takakura, Y. Hamakawa and T. Nishino, J. Appl.
Phys. 68, 5309(1990)
15. D. Yan, E. Look, X. Yin, Fred H. Pollak and J. M. Woodall, Appl. Phys. Lett.
65, 186(1994)
16. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W.
David, and Z. Hang, Appl. Phys. Lett. 64, 3314(1994)
17. W. Y. Chou, G. S. Chang, W. C. Hwang, and J. S. Hwang, J. Appl. Phys. 83,
3690(1998)
18. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83,
2857(1998)
19. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl.
Phys. 86, 1765(1999)
20. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081
21. D. E. Aspnes, in M. Balkanski, Handbook on Semiconductors, Vol. 2,
North-Holland, New York, 1980, p.109; also Surf. Sci, 37, 418(1973)
22. D. E. Aspnes, Phys. Rev. B10, 4228(1974)
23. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Ysai, D. G. Liu and C. P. Lee, J.
Appl. Phys. 72, 1065(1992)
24. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C.
Ito and D. McIntyre, J. Cryst. Growth, 93, 481(1988)
25. D. E. Aspnes and A. A. Studna, Phys. Rev. B7, 4605(1973)
26. C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, Appl. Phys.
Lett. 54, 608(1989)
27. J. S. Hwang, C. C. Chang, M. F. Chen, C. C. Chen, K. I. Lin, F. C. Tang, M.
Hong and J. Kwo, J. Appl. Phys. 94, 348(2003)
28. J. S. Hwang, G. S. Chang, W. C. Hwang, and W. J. Chen, J. Appl. Phys. 89,
1771(2001)
29. Y. P. Varshni, Physica 34, 149(1967)
30. 施敏, 半導體元件物理與製作技術(第二版),(國立交通大學出版社,新竹), p180
31. J. L. Freeouf, and J. M. Woodall, Appl. Phys. Lett. 39, 727(1981)
32. W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R.
Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Scl. Technol.
B6, 1245(1988)
33. J. M. Garland, H. Abad, M. Viccaro and P. M. Raccah, Appl. Phys. Lett. 52,
1176(1988)
34. R. N. Bhattacharya, H. Shen, P. Parayanthal, Fred H. Pollak, T. Coutts and H.
Aharoni, Phys. Rev. B37, 4044(1988)
35. M. D. Pashley, K. W. Haberern and R. M. Feenstra, J. Vac. Scl. Technol. B
10,1874(1992)
36. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989)
37. Yichun Yin, D. Yan, Fred H. Pollak, G. D. Pettit and J. M. Woodall, Phys.
Rev. B43, 12138(1991)
38. S. L. Tyan, M. L. Lee, Y. C. Wang, W. Y. Chou, and J. S. Hwang, J. Vac. Scl.
Technol. B13, 1010(1995)
39. H. Shen, W. Zhou, J. Pamulapati and F. Ren, Appl. Phys. Lett. 74, 1430(1999)
40. Donald A. Neamen, 半導體物理及元件(第三版),(台商圖書有限公司,台北), p159
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top