|
[1] Gruneis A, Saito R, Samsonidze GG, Kimura T, et al. Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Phys Rev B 2003; 67(16):5402-7.
[2] Gorbar EV, Gusynin VP, Miransky VA, Shovkovy IA. Magnetic field driven metal-insulator phase transition in planar systems. Phys Rev B 2002; 66(4):045108-22.
[3] Vozmediano MAH, Lopez-Sancho MP, Guinea F. Confinement of electrons in layered metals. Phys Rev Lett 2002; 89(16):6401-4.
[4] Shon NH, Ando T. Quantum transport in two-dimensional graphite system. J Phys Soc Jpn 1998; 67 (7):2421-2429.
[5] Zheng YS, Ando T. Hall conductivity of a two-dimensional graphite system. Phys Rev B 2002; 65 (24):245420-11.
[6] Kopelevich Y, Torres JHS, da Silva RR, Mrowka F, Kempa H, Esquinazi P. Reentrant metallic behavior of graphite in the quantum limit.Phys Rev Lett 2003; 90(15):156402-4.
[7] Kempa H, Kopelevich Y, Mrowka F, et al. Magnetic-field-driven superconductor-insulator-type transition in graphite.Solid State Communications 2000; 115(10):539-542.
[8]Kempa H, Esquinazi P, Kopelevich Y. Field-induced metal-insulator transition in the c-axis resistivity of graphite.Phys Rev B 2002; 65(24):241101-4.
[9] Kempa H, Semmelhack HC, Esquinazi P, et al. Absence of metal-insulator transition and coherent interlayer transport in oriented graphite in parallel magnetic fields. Solid State Communications 2003; 125(1):1-5.
[10] Khveshchenko DV. Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite. Phys Rev Lett 2001; 87(20):6401-4.
[11] Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence.Phys Rev B 1996; 54(24):17954-17961.
[12] Fujita M, Igami M, Nakada K. Lattice distortion in nanographite ribbons. J Phys Soc Jpn 1997; 66(7):1864-1867.
[13] Fujita M, Wakabayashi K, Nakada K, et al. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 1996; 65(7):1920-1923.
[14] Wakabayashi K, Sigrist M, Fujita M. Spin wave mode of edge-localized magnetic states in nanographite zigzag ribbons. J Phys Soc Jpn 1998; 67(6):2089-2093.
[15] Miyamoto Y, Nakada K, Fujita M. First-principles study of edge states of H-terminated graphitic ribbons. Phys Rev B 1999; 59(15):9858-9861.
[16] Ramprasad R, von Allmen P, Fonseca LRC. Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges. Phys Rev B 1999; 60(8):6023-6027.
[17] Nakada K, Igami M, Fujita M. Electron-electron interaction in nanographite ribbons. J Phys Soc Jpn 1998; 67(7):2388-2394.
[18] Kawai T, Miyamoto Y, Sugino O, et al. Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys Rev B 2000; 62(24):R16349-R16352.
[19] Yoshizawa K, Yahara K, Tanaka K, et al. Bandgap oscillation in polyphenanthrenes. J Phys Chems B 1998; 102(3):498-506.
[20] Shyu FL, Lin MF, Chang CP, et al. Tight-binding band structures of nanographite multiribbons. J Phys Soc Jpn 2001;70(11):3348-3355. (the figures for armchair ribbons in this manuscript will be revised because of the numerical calculation errors).
[21] Shyu FL, Lin MF. Electronic properties of AA-stacked nanographite ribbons. Phyisca E 2003; 16(2):214-222.
[22] Chang CP, Chiu CW, Shyu FL, et al. Magnetoband structures of AB-stacked zigzag nanographite ribbons. Phys Lett A 2002; 306 (2-3):137-143.
[23] Hofstadter DR. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys Rev B 1976; 14(6):2239-2249.
[24] Sun SN, Ralston JP. Possibility of quenching the integer-quantum-Hall behavior with increasing lattice asymmetry. Phys Rev B 1991; 44(24):13603-13610.
[25] Barelli A, Bellissard J, Claro F. Magnetic-field-induced directional localization in a 2D rectangular lattice. Phys Rev Lett 1999; 83(24):5082-5085.
[26] Thouless DJ. Bandwidths for a quasiperiodic tight-binding model. Phys Rev B 1983; 28(8):4272-4276.
[27] Hasegawa Y, Hatsugai Y, Kohmoto M, Montambaux G. Stabilization of flux states on two-dimensional lattices. Phys Rev B 1990; 41(13): 9174-9182.
[28] Oh GY. Energy spectrum of a triangular lattice in a uniform magnetic field: Effect of next-nearest-neighbor hopping. J Korean Phys Soc 2000; 37 (5): 534-539.
[29] Gumbs G, Fekete P. Hofstadter butterfly for the hexagonal lattice. Phys Rev B 1997; 56(7):3787-3791.
[30] Oh GY. Peierls substitution in the energy dispersion of a hexagonal lattice. J Phys-Condens Mat 2000; 12(7):1539-1543.
[31] Anisimovas E, Johansson P. Butterfly-like spectra and collective modes of antidot superlattices in magnetic fields. Phys Rev B 1999; 60(11):7744-7747. [32] Koshino M, Aoki H, Kuroki K, et al. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys Rev Lett 2001; 86(6):1062-1065.
[33] Koshino M, Aoki H, Osada T, et al. Phase diagram for the Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys Rev B 2002; 65(4):5310-9.
[34] Hatsugai Y. Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys Rev B 1993; 48(16):11851-11862.
[35] Johnson JG, Dresselhaus G. Optical Properies of Graphite. Phys Rev B 1973; 7(6):2275-2285.
[36] Lin MF, Shyu FL, Chen RB. Optical properties of well-aligned multiwalled carbon nanotube bundles. Phys Rev B 2000; 61(20):14114-14118.
[37] Shyu FL, Chang CP, Chen RB, et al. Magnetoelectronic and optical properties of carbon nanotubes. Phys Rev B 2003; 67(4):045405(9).
[38] Djurišić AB, Li EH. Optical properties of graphite.J of Appl Phys 1999; 85 (10):7404-7410.
|