跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉建惟
研究生(外文):Chien-Wei Liu
論文名稱:以微機電製程發展研製微管系統以供量測其內之熱傳現象
論文名稱(外文):FABRICATION DEVELOPMENT FOR MICRO CHANNEL SYSTEM BY MEMS TECHNOLOGY WITH MEASUREMENTS OF THE INSIDE THERMAL TRANSPORT PROCESSCONTENTS
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:203
中文關鍵詞:微機電系統微管道微熱流傳遞現象微機電製程技術
外文關鍵詞:microchannelMEMSfabrication techniques of MEMSmicro thermal fluid transport phenomenon
相關次數:
  • 被引用被引用:10
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
若要將微奈米機電系統順利整合於IC系統晶片之上則微奈米機電系統之製程必須朝向低溫製程研究發展。本研究提供一套有效結合IC製程與新式低溫微奈米機電製程之技術,成功地將微溫度、微壓力感測元件陣列及微加熱阻器整合於微加熱管道系統內部並進行不同進口雷諾數條件的局部微尺寸熱流傳輸現象研究。局部詳細的熱流傳輸現象研究的重要貢獻不僅對於基礎微觀熱流理論研究影響甚鉅,並且還可將其應用於許多特殊功能的微奈米機電熱系統研發。但不幸地,在現今絕大多數發表於國際期刊的微管道製程設計皆無法有效地控制或減少其內部所產生的大量軸向熱傳導或熱損失,如此嚴重的實驗誤差導致局部詳細的熱流資料無法被準確地量取而僅能獲取其進出口處粗略的平均熱流資料。

本研究研製的微管道尺寸長、寬、高各為4000μm、500μm及80μm。針對重要的設計考量如:熱損失控制及微壓力感測器的設計模擬結果與其他整合製程中所使用的多項關鍵技術將會本論文中作詳細的分析及討論。整合製程首先利用標準六吋半導體製程技術將微溫度、微壓力感測元件陣列及微加熱阻器整合於矽晶片;然後經由低溫環氧樹脂接合及TMAH濕式蝕刻過程將所有建構於矽晶片上的微感測元件轉印至玻璃基材;最後再利用SU-8微影技術及第二次的低溫環氧樹脂接合過程建造出結構緊密的微加熱管道本體,在施以一較小的驅動壓差後即可使黏性流體輕易地流過微管並順利地進行熱傳實驗。值得注意的是本研究研製的微加熱管道晶片最後的結構體皆使用極低熱傳導係數的材料如:SU-8負型光阻、環氧樹脂、PMMA及玻璃基材,因此可非常有效地減少及控制熱系統的熱損失並精確地量取微加熱管道內局部詳細的熱傳分佈資料。

針對不同的雷諾數情況,其沿著微管方向所量取的局部熱傳係數分佈結果發現皆明顯遠小於傳統大尺寸的情況,此偏差量乃歸因於微尺寸效應的影響。此外,在工作流體為空氣及去離子水的情況,其局部熱傳係數分別也會隨著Re及熱通量的增加而增加。其他更多的實驗量測方法及熱傳分佈結果都將會在本論文中作更進一步且詳細的分析與討論。
The development and fabrication of a MEMS at a low temperature process is required if the MEMS system is to be made on top of an IC system. The current work presents a novel low temperature fabrication process for a microchannel system that is integrated with the heaters and arrays of temperature and pressure sensors inside. This channel system can be used to study the local micro-scale heat transfer process at different Reynolds number flow conditions. Understanding of local flow and heat transfer process is very important not only for the basic research but also for practical application in MEMS thermal system. Unfortunately, most of the current micro-channel used or fabricated could not provide local heat transfer measurements due to the improper control of the heat loss. The channels fabricated in the past will lead to a large amount of axial conduction and heat loss; therefore, local heat transfer data could not be obtained accurately.

The current channel designed and fabricated has an inside dimension of 4000 µm in length, 500 µm in width and 80 µm in height. Several important design considerations for the control of heat loss, the pressure sensors and the channel fabrication process will be analyzed and discussed. Initially, the heaters and the arrays of temperature sensors and pressure sensors selected are made of polysilicon layers doped with different concentration of boron, which are deposited and patterned on a 6 inch P-type (100) silicon wafer by LPCVD, photolithography process and RIE dry etching, respectively. Then, all the devices fabricated were moved onto a low thermal conductivity epoxy-glass substrate by using the low temperature epoxy bonding process and the TMAH wet etching process. The final step is to construct a relatively thick and compact channel structure, by using the techniques of SU-8 lithography and a second low temperature epoxy bonding process, which can readily allow for water or other viscous flows through the channel. In this way, all the wall materials used have a very low thermal conductivity that can significantly minimize both the axial conduction and the heat loss. Therefore, very accurate local heat transfer data can be measured and obtained for the first time in the literature. Many fabrication techniques developed in this work will be presented and discussed.

The local Nusselt numbers obtained along the channel flow direction at each Reynolds number are compared with the results for the case of large-scale channel. It is found that the local Nusselt numbers is significantly smaller than the results of large-scale channel, and the reason for this deviation is attributed to the micro-scale effect. In addition, the local Nusselt numbers increases with increasing Re and the heat flux, respectively, in both the case of air and DI water flow. Detailed discussion on the measurements and analysis of the heat transfer results will be presented in this work.
ABSTRACT IN CHINESE (I)
ABSTRACT (XI)
CONTENTS (XIII)
LIST OF TABLES (XV)
LIST OF FIGURES (XVI)
NOMENCLATURE (XXIII)

CHAPTER
I INTRODUCTION (1)
1.1 Micro-Electro-Mechanical Systems (1)
1.2 Objectives (2)
1.3 Reviews of Literatures (3)
1.3.1 Flow and Heat Transport in Microchannel (3)
1.3.2 Fabrication of Microchannel (14)
1.4 Outline of Fabrication Process (15)

II DESIGN AND FABRICATION CONSIDERATIONS OF MICROCHANNEL (17)
2.1 Thermal Analysis of Different Substrate Models (17)
2.2 Characteristics and Designs of Temperature Sensor and Heater (20)
2.3 Design of Pressure Sensor (21)
2.3.1 Analysis of Pressure Diaphragm (21)
2.3.2 Characteristic and Design of Pressure Sensor (25)
2.4 Microchannel Design: Model-1 (27)
2.4.1 Fabrication Process (28)
2.4.2 Problems of Fabrication (30)
2.5 Microchannel Design: Model-2 (33)
2.6 Arrangements of the Devices in Microchannels (35)

III FABRICATION OF MICROCHANNEL (37)
3.1 Fabrication Process without an Array of Pressure Sensor (38)
3.2 Discussions on the Fabrication Techniques (41)
3.2.1 Integrated sensors on a Silicon Substrate (41)
3.2.1.1 Polysilicon Sensors and Dry Etch Process (43)
3.2.1.2 Contact Holes Opening Process (44)
3.2.1.3 Ion Implantation Process (47)
3.2.1.4 Wafer Clean Process (48)
3.2.2 Epoxy Bonding-1 (Silicon and Pyrex glass) (50)
3.2.3 TMAH Wet Etching Process (54)
3.2.4 Wafer Cutting Process (62)
3.2.5 SU-8 Lithography Process (63)
3.2.6 Epoxy Bonding-2 (Epoxy-Glass Substrate and PMMA Cover) (66)
3.3 Fabrication Process with an Array of Pressure Sensor (67)
3.3.1 Fabrication Process (67)
3.3.2 Release Residual Stress in Polysilicon Pressure Diaphragm (71)

IV EXPERIMENTAL APPARATUS AND PROCEDURES (74)
4.1 Experimental Apparatus (74)
4.1.1 Liquid Flow Supply System (74)
4.1.2 Gas Flow Supply System (75)
4.1.3 Measurement of Heat Transfer inside The Channel (75)
4.2 Characteristics of The Heater and The Sensors (77)
4.3 Experimental Procedures (78)

V MICRO-SCALE HEAT TRANSPORT IN THE CHANNEL (80)
5.1 Micro Heat Transfer Characteristic inside the Channel for Air Flow (80)
5.2 Micro Heat Transfer Characteristic inside the Channel for DI water Flow (84)
5.3 Conclusions (85)


VI CONCLUSIONS (87)

REFERENCES (89)
TABLES (102)
FIGURES (107)
VITA (199)
PUBLICATION LIST (200)
Adams, T. M., Ghiaasiaan, S. M., and Abdel-Khalik, S. I., 1999, “Enhancement of liquid forced convection heat transfer in microchannels due to the release of dissolved noncondensables,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 3563-3573.

Alofs, D. J., Flagan, R. C., and Springer, G. S., 1971, “Density distribution measurements in rarefiled gases contained between parallel plates at high temperature differences,” The Physics of Fluids, Vol. 14, No. 3, pp. 529-533.

Arkilic, E. B., and Breuer, K. S., 1994, “Gaseous flow in microchannels,” Application of Microfabrication to Fluid Mechanics, ASME, FED, Vol. 197, pp. 57-65.

Arkilic, E. B., and Schmidt, M. A., 1997, “Gaseous slip flow in long microchannels,” Journal of Microelectromechanical Systems, Vol. 6, No. 2, pp. 167-178.

Arulanandam, S., and Li, D., 2000, “Liquid transport in rectangular microchannels by electroosmotic pumping,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 161, pp. 89-102.

Beskok, A., and Karniadakis, G. E., 1994, “Simulation of heat and momentum transfer in complex microgeometries,” Journal of Thermophysics and Heat Transfer, Vol. 8, No. 4, pp. 246-259.

Bird, G. A., 1976, “Molecular gas dynamics and the direct simulation of gas flows,” Clarendon Press, Oxford, pp. 183-207.

Bird, G. A., 1976, “Molecular gas dynamics,” Clarendon Press, Oxford, pp. 110-117.

Brien, J. O., Hughes, P. J., Brunet, M., O’Neill, B., and Alderman, J., 2001, “Advanced photoresist technologies for Microsystems,” Journal of Micromechanics and Micro engineering, Vol. 11, pp. 353-358.

Brunet, M., O’Donnell, T., O’Brien, J., McCloskey, P., and O’Mathuna, S. C., 2002, “Thick photoresist development for the fabrication of high aspect ratio magnetic coils,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 444-449.

Chen, H. R., 2001, “Design and fabrication of the microchannel system for thermal fluid study,” Ph D. Thesis, National Cheng Kung University, Taiwan.
Chen, H. R., Gau, C., Dai, B. T., and Tsai, M. S., 2002, “Fabrication of a micro-flow heat transfer channel integrated with arrays of micro temperature and pressure sensors,” Proceedings of the Pacific Rim Workshop on Transducers and Micro/Nano Technologies, Xiamen, China, pp. 689-692.

Chen, P. H., Peng, H. Y., Hsieh, C. M., and Chyu, M. K., 2001, “The characteristic behavior of TMAH water solution for anisotropic etching on both silicon substrate and SiO2 layer,” Sensors and Actuators A, Vol. 93, pp. 132-137.

Choi, S. B., Barron, R. F., and Warrington, R. O., 1991, “Fluid flow and heat transfer in microtubes,” Micromechanical Sensors, Actuators, and Systems, ASME, DSC, Vol. 32, pp. 123-134.

Choondal B. S., and Suresh, V. G., 2000, “A comparative analysis of studies on heat transfer and fluid flow in microchannels,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 80-92.

Chu, W. K. H., Hsu, C. T., Wong, M., and Zohar, Y., 1994, “Heat transfer in a microchannel flow,” Proceedings of the 1994 IEEE Electron Devices Meeting, Hong Kong, pp. 38-43.

Data sheet for NATOTM SU-8 negative tone photoresists, Formulations 50 and 100, released by Micro Chem Corp.

Eckert, E. R. G., and Drake, R. M., 1972, “Analysis of heat and mass transfer,” McGraw-Hill, New York, pp. 467-495.

Fan, Q., and Xue, H., 1998, “Compressible effects in microchannel flows,” Proceedings of the IEEE/CPMT Electronics Packaging Technology Conference, pp. 224-228.

Flik, M. I., Choi, B. I., and Goodson, K. E., 1991, “Heat transfer regimes in microstructures,” Micromechanical Sensors, Actuators, and Systems, ASME, DSC, Vol. 32, pp. 31-47.

Gau, C., Huang, T. M., and Aung, W., 1996, “Flow and mixed convection heat transfer in a divergent heated vertical channel,” ASME Journal of Heat Transfer, Vol. 118, No. 3, pp. 606-615.

Gau, C., Liu, C. W., Huang, T. M., and Aung, W., 1999, “Secondary flow and enhancement of heat transfer in horizontal parallel plate and convergent channels heating from below,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 2629-2647.

Guckel, H., 1991, “Surface micromachined pressure transducers,” Sensors and Actuators A, Vol. 28, pp. 133-146.

Guo, Z. Y., 2000, “Size effect on flow and heat transfer characteristics in MEMS,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 24-31.

Hapke, I., Boye, H., and Schmidt, J., 2000, “Flow boiling of water and n-heptane in micro channels,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 222-228.

Harms, T. M., Kazmierczak, M. J., and Gerner, F. M., 1999, “Developing convective heat transfer in deep rectangular microchannels,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 149-157.

Hetsroni, G., Mosyak, A., Segal, Z., and Ziskind, G., 2002, “A uniform temperature heat sink for cooling of electronic devices,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3275-3286.

Hu, H. Y., Peterson, G. P., Peng, X. F., and Wang, B. X., 1998, “Interface fluctuation propagation and superposition model for boiling nucleation,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 3483-3490.

Huang, T. M., 1994, “Mixed convection flow and heat transfer in a heated convergent or divergent channel,” Ph.D Thesis, National Cheng Kung University, Tainan, Taiwan.

Huang, T. M., Gau, C., and Aung, W., 1995, “Mixed convection flow and heat transfer in a vertical convergent channel,” International Journal of Heat and Mass Transfer, Vol. 38, No. 13, pp. 2445-2456.

Jiang, L., Wong, M., and Zohar, Y., 1999, “Phase change in microchannel heat sinks with integrated temperature sensors,” Journal of Microelectromechanical Systems, Vol. 8, No. 4, pp. 358-365.

Jiang, X. N., Zhou, Z. Y., Yao, J., Li, Y., and Ye, X. Y., 1995, “Micro-fluid flow in micro channel,” Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX (Transducers ‘95), Stockholm, Sweden, pp. 317-320, June 25-29.

Judy, J., Maynes, D., and Webb, B. W., 2000, “Liquid flow pressure drop in microtubes,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 149-154.

Judy, J., Maynes, D., and Webb, B. W., 2002, “Characterization of frictional pressure drop for liquid flows through microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3477-3489.

Kennard, E. H., 1938, “Kinetic theory of gases-with an introduction to statistical mechanics,” McGraw-Hill, Inc., New York, pp. 291-337.

Khantuleva, T. A., 1982, “Nonlocal hydrodynamical models of gas flows in the transition regime. Rarefied gas dynamics 1,” Belotserkovskii, O. M., Kogan, M. N., Kutateladze, S. S. and Rebrov, A. K. Ed., Plenum Press, New York, pp. 229-235.

Khrustalev, D., and Faghri, A., 1993, “Thermal analysis of a micro heat pipe,” Heat Pipes and Capillary Pumped Loops, ASME, HTD, Vol. 236, pp. 19-30.

Kim, D., and Ghajar, A. J., 2002, “Heat transfer measurements and correlations for air-water flow of different flow patterns in a horizontal pipe,” Experimental Thermal and Fluid Science, Vol. 25, pp. 659-676.

Kline, S. J., and McClintock, F. A., 1953, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, Vol. 75, pp. 3-12.

Koo, J., and Kleinstreuer, C., 2003, “Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 568-579.

Kumar, S., and Vradis, G. C., 1991, “Thermal conduction by electrons along thin films: effects of thickness according to Boltzmann transport theory,” Micromechanical Sensors, Actuator, and Systems, ASME, DSC, Vol. 32, pp. 89-101.

Lee, M., Wong, Y. Y., Wong, M., and Zohar, Y., 2003, “Size and shape effects on two-phase flow patterns in microchannel forced convection boiling,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 155-164.

Li, Z. X., Du, D. X., and Guo, Z. Y., 2000, “Experimental study on flow characteristics of liquid in circular microtubes,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 162-167.

Lin, C. H., Lee, G. B., Chang, B. W., and Chang, G. L., 2002, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 590-597

Lin, L., and Pisano, A. P., 1991, “Bubble forming on a micro line heater,” Micromechanical Sensors, Actuators, and Systems, ASME, DSC, Vol. 32, pp. 147-164.

Lin, L., Udell, K. S., and Pisano, A. P., 1994, “Liquid-vapor phase transition and bubble formation in micro structures,” Thermal Science Engineering, Vol. 2, pp. 52-59.

Liu, J., Tai, Y. C, and Ho, C. M., 1995, “MEMS for pressure distribution studies of gaseous flows in microchannels,” Proceedings of the IEEE Micro Electro Mechanical Systems. Catalog # 95CH35754, pp. 209-215.

Liu, R. H., Vasile, M. J., and Beebe, D. J., 1999, “The fabrication of nonplanar spin-on glass microstructures,” Journal of Microelectromechanical Systems, Vol. 8, No. 2, pp. 146-151.

Loechel, B., 2000, “Thick-layer resists for surface micromachining,” Journal of Micromechanics and Microengineering, Vol. 10, pp. 108-115.

Lorenz, H., Despont, M., Fahrni, M., Brugger, J., Vettiger, P., and Renaud, P., 1998, “High-aspect-ratio, ultra thick, negative-tone near UV photoresist and its application for MEMS,” Sensors and Actuators A, Vol. 64, pp. 33-39.

Mala, G. M., Li, D., and Dale, J. D., 1996, “Heat transfer and fluid flow in microchannels,” Microelectromechanical Systems (MEMS), ASME, DSC, Vol. 59, pp. 127-136.

Mala, G. M., Li, D., and Dale, J. D., 1997, “Heat transfer and fluid flow in microchannels,” International Journal of Heat and Mass Transfer, Vol. 40, No. 13, pp. 3079-3088.

Mala, G. M., Li, D., Werner, C., Jacobasch, H. J., and Ning, Y. B., 1997, “Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects,” International Journal of Heat and Fluid Flow, Vol. 18, No. 5, pp. 489-496.

Mala, G. M., Yang, C., and Li, D., 1998, “Electrical double layer potential distribution in a rectangular microchannel,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 135, pp. 109-116.

Mosser, V., Suski, J., Goss, J., and Obermeier, E., 1991, “Piezoresistive pressure sensors based on polycrystalline silicon,” Sensors and Actuators A, Vol. 28, pp. 113-132.

Obermeier, E. and Kopystynski, P., 1992, “Polysilicon as a material for microsensor applications,” Sensors and Actuators A, Vol. 30, pp. 149-155.

Obot, N. T., 2002, “Toward a better understanding of friction and heat/mass transfer in microchannels-A literatures review,” Microscale Thermophysical Engineering, Vol. 6, pp. 155-173.

Okuyama, K., and Iida, Y., 2000, “Boiling nucleation, bubble dynamics and heat transfer on a micro film surface heated at an extremely high rate,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 237-244.

Palm, B., 2000, “Heat transfer in microchannels,”
Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 54-64.

Papautsky, I., Brazzle, J., Ameel, T., and Frazier, A. B., 1999, “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators A, Vol. 73, pp. 101-108.

Pfahler, J., Harley, J., Bau, H., and Zemel, J., 1990, “Liquid transport in micron and submicron channels,” Sensors and Actuators A, Vol. 21/23, pp. 431-434.

Pfahler, J., Harley, J., Bau, H., and Zemel, J., 1990, “Liquid and gas transport in small channels,” Microstructures, Sensors, and Actuators, ASME, DSC, Vol. 19, pp. 149-157.

Pfahler, J., Harley, J., and Bau, H., 1991, “Gas and liquid flow in small channels,” Micromechanical Sensors Actuators, and Systems, ASME, DSC, Vol. 32, pp. 49-59.

Peng, X. F., Liu, D., Lee, D. J., and Yan, Y., 2000, “Cluster dynamics and fictitious boiling in microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 4259-4265.

Peng, X. F., and Peterson, G. P., 1996, “Convective heat transfer and flow friction for water flow in microchannel structures,” International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2599-2608.

Peng, X. F., Peterson, G. P., and Wang, B. X., 1994, “Heat transfer characteristic of water flowing through microchannels,” Experimental Heat Transfer, Vol. 7, pp. 265-283.

Peng, X. F., Peterson, G. P., and Wang, B. X., 1996, “Flow boiling of binary mixtures in microchanneled plates,” International Journal of Heat and Mass Transfer, Vol. 39, No. 6, pp. 1257-1264.

Peng, X. F., Tien, Y., and Lee, D. J., 2001, “Bubble nucleation in microchannels: statistical mechanics approach,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 2957-2964.

Peng, X. F., and Wang, B. X., 1993, “Forced convection and flow boiling heat transfer for liquid flowing through micro channel,” International Journal of Heat and Mass Transfer, Vol. 36, No. 14, pp. 3421-3427.

Peng, X. F., and Wang, B. X., 1994, “Evaporation space and fictitious boiling for internal evaporation of liquid,” Science Foundation in China, Vol. 2, pp. 55-59.

Peng, X. F., and Wang, B. X., 1998, “Forced-convection and boiling characteristics in microchannels,” Proceedings of the 11th International Heat Transfer, Vol. 1, pp. 371-390.

Peng, X. F., Wang, B. X., Peterson, G. P., and Ma, H. B., 1995, “Experimental investigation of heat transfer in flat plates with rectangular microchannels,” International Journal of Heat and Mass Transfer, Vol. 38, No. 1, pp. 127-137.

Pong, K., Ho, C. M., Liu, J., and Tai, Y. C., 1994, “Non-linear pressure distribution in uniform microchannels,” Application of Microfabrication to Fluid Mechanics, ASME, FED, Vol. 197, pp. 51-56.

Qu, W., Mala, G. M., and Li, D., 2000, “Pressure-driven water flows in trapezoidal silicon microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 353-364.

Qu, W., Mala, G. M., and Li, D., 2000, “Heat transfer for water flow in trapezoidal silicon microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 3925-3936.

Ren, L., and Li, D., 2001, “Electroosmotic flow in heterogeneous microchannels,” Journal of Colloid and Interface Science, Vol. 243, pp. 255-261.

Ren, L., Li, D., and Qu, W., 2001, “Electro-viscous effects on liquid flow in microchannels,” Journal of Colloid and Interface Science, Vol. 233, pp. 12-22.

Ren, L., Qu, W., and Li, D., 2001, “Interfacial electrokinetic effects on liquid flow in microchannels,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3125-3134.

Samalam, V. K., 1989, “Convective heat transfer in microchannels,” Journal of Electronic Materials, Vol. 18, No. 5, pp. 611-617.

Satoh, A., 1999, “Water glass bonding,” Sensors and Actuators A, Vol. 72, pp. 160-168.

Sayah, A., Solignac, D., Cueni, T., and Gijs, M. A. M., 2000, “Development of novel low temperature bonding technologies for microchip chemical analysis applications,” Sensors and Actuators A, Vol. 84, pp. 103-108.

Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H., 1990, “Anisotropic etching of crystalline silicon in alkaline solutions,” Journal of Electrochemical Society, Vol. 137, pp. 3612-3626.

Shen, C. H., 2003, “Thermal chip fabrication with arrays of sensors and heaters with analysis and measurements of micro scale impingement cooling flow and heat transfer,” Ph D. Thesis, National Cheng Kung University, Taiwan.

Shen, C. H., and Gau, C., 2003, “Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements,” Proceedings of the first International Meeting on Microsensors and Microsystem, Tainan, Taiwan.

Shih, J. C., Ho, C. M., Liu, J., and Tai, Y. C., 1996, “Monatomic and polyatomic gas flow through uniform microchannels,” Microelectromechanical Systems (MEMS), ASME, DSC, Vol. 59, pp. 197-203.

Shih, Y. H., 2002, “Pressure drop distribution measurement analysis in micro liquid flow channel,” M. S. Thesis, National Cheng Kung University, Taiwan.

Sobhan, C. B., and Garimella, S. V., 2000, “A comparative analysis of studies on heat transfer and fluid flow in microchannels,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 80-92.

Takao, K., 1961, “Rarefied gas flow between two parallel plates. Rarefied gas dynamics,” Talbot, L., Ed., Academic Press, New York, Section 1, pp. 465-473.

Takeshi, I., Kazuharu, S., and Seishiro, O., 2002, “Water glass bonding for micro-total analysis system,” Sensors and Actuators B, Vol. 81, pp. 187-195.

Takuto, A., Soo, K. M., Hiroshi, I., and Kenjiro, S., 2000, “An experimental investigation of gaseous flow characteristics in microchannels,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 155-161.

Touloukian, Y. S., 1970-1979, “Thermophysical properties of matter: the TPRC data series; a comprehensive compilation of data,”IFI/Plenum, New-York.

Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and LeMouel, A., 1999, “Gas-liquid two-phase flow in microchannels, Part II: void fraction and pressure drop,” International Journal of Multiphase flow, Vol. 25, pp. 395-410.

Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and Sadowski, D. L., 1999, “Gas-liquid two-phase flow in microchannels, Part I: twp-phase flow patterns,” International Journal of Multiphase flow, Vol. 25, pp. 377-394.

Tsai, C. Y., 2003, “Stiction relief of polysilicon thin film,” M. S. Thesis, National Cheng Kung University, Taiwan.

Tso, C. P., and Mahulikar, S. P., 1998, “Laminar convection behavior in microchannels in conventional thermal entry length and beyond,” Proceedings of the IEEE/CPMT Electronics Packaging Technology Conference, pp. 126-132.
Vainshtein, P., and Gutfinger, C., 2002, “On electroviscous effects in microchannels,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 252-256.

Vincenti, W. G., and Kruger, C. H., 1965, “Introduction to physical gas dynamics,” pp. 316-435.

Wadsworth, D. C., Erwin, D. A., and Muntz, E. P., 1993, “Transient motion of a confined rarefied gas due to wall heating or cooling,” Journal of Fluid Mechanics, Vol. 248, pp. 219-235.

Wang, B. X., and Peng, X. F., 1994, “Experimental investigation on liquid forced- convection heat transfer through microchannels,” International Journal of Heat and Mass Transfer, Vol. 37, No. 1, pp. 73-82.

Webb, B. W., and Hill, D. P., 1989, “High Rayleigh number laminar natural convection in an asymmetrically heated vertical channel,” ASME Journal of Heat Transfer, Vol. 111, pp. 649-656.

Wei, Q., and Tongze, M., 2000, “Characteristics of two-phase flow and evaporation heat transfer in a capillary at constant heat fluxes,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 229-236.

Werner, C., Korber, H., Zimmermann, R., Dukhin, S., and Jacobasch, H. J., 1998, “Extended electrokinetic characterization of flat solid surface,” Journal of Colloid and Interface Science, Vol. 208, pp. 329-346.

Westergaard, H. M. and Slater, W. A., 1921, “Moments and stresses in slabs,” Proceedings of American Concrete Institute, Vol. 17, pp. 415-538.

Wu, S., Mai, J., Zohar, Y., Tai, Y. C., and Ho, C. M., 1998, “A suspended microchannel with integrated temperature sensors for high-pressure flow studies,” Proceedings of the 11th Annual International Workshop on MEMS 98, pp. 87-92.

Xue, H., Ji, H. M., and Shu, C., 2000, “Prediction of flow and heat transfer characteristics in micro couette flow,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 93-99.

Yang, C. Y., Chien, H. T., Lu, S. R., and Shyu, R. J., 2000, “Friction characteristics of water, R-134a and air in small tubes,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 168-174.

Yang, C., and Li, D., 1997, “Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels,” Journal of Colloid and Interface Science, Vol. 194, pp. 95-107.

Yang, C., and Li, D., 1998, “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids and Surface A: Physicochemical and Engineering Aspects, Vol. 143, pp. 339-353.

Yang, C., Li, D., and Masliyah, J. H., 1998, “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 4229-4249.

Yang, R. J., Fu, L. M., and Hwang, C. C., 2001, “Electroosmotic entry flow in a microchannel,” Journal of Colloid and Interface Science, Vol. 244, pp. 173-179.

Yen, S. M., 1971, “Monte carlo solutions of nonlinear Boltzmann equation for problems of heat transfer in rarefied gases,” International Journal of Heat and Mass Transfer, Vol. 14, pp. 1865-1869.

Yu, D., Warrington, R., Barron, R., and Ameel, T., 1995, “An experimental and theoretical investigation of fluid flow and heat transfer in microtubes,” Proceedings of the ASME/JSME Thermal Engineering Conference, ASME, Vol. 1, pp. 523-530.

Zhang, J., Tan, K. L., Hong, G. D., Yang, L. J., and Gong. H. Q., 2001, “Polymerization optimization of SU-8 photoresist and its application in microfluidic systems and MEMS,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 20-26.

Zhang, X., Zhang, T. Y., Wong, M., and Zohar, Y., 1998, “Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing,” Sensors and Actuators A, Vol. 64, pp. 109-115.

Ziering, S., 1961, “Plane Poiseuille Flow. Rarefied gas dynamics,” Talbot, L., Ed., Academic Press, New York, Section 1, pp. 451-463.

Zubel, I., and Kramkowska, M., 2001, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A, Vol. 93, pp. 138-147.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊