# 臺灣博碩士論文加值系統

(44.192.20.240) 您好！臺灣時間：2024/02/25 00:04

:::

### 詳目顯示

:

• 被引用:1
• 點閱:191
• 評分:
• 下載:8
• 書目收藏:0
 由於環保問題，震波/渦漩交互作用所引起噪音是工程師和科學家們所感興趣的問題。此現象發生在汽車引擎排氣管中或是震波在建築物內運動時。本文旨在研究震波繞射時所產生之渦漩與反射震波交互作用的流場結構。震波繞射分別經過九十度轉角與一百八十度轉角兩種情況，分別探討所形成的渦漩結構與特性及其噪音產生的機制。所採用的方法為加權基本不震盪法搭配有限體積法求解二維可壓縮尤拉方程式。首先驗證程式之正確性，計算結果並與現存實驗結果相比較，相較結果令人滿意。其次對震波繞射問題做探討，並且對不同入射震波馬赫數之繞射震波所引發渦漩生成，以及為了捕捉反射震波與渦漩交互作用所產生的環形聲波，本文採用陰影法、紋影法、全像干涉三種方法做詳盡的報導。本文發現當入射震波馬赫數的強度達到一定的程度之後，在流場中間部份的反射震波會有滯留現象產生，兩旁反射震波則受到渦漩的影響加速向上游前進，滯留反射震波之臨界入射震波馬赫數約為1.4。本文涵蓋二維與軸對稱之結果，吾人發現，當反射震波與渦漩交互作用時，軸對稱問題所引發之渦漩中心壓力提升低於所對應的二維問題。
 In this study, the problem of a planar reflected shock/vortex interaction near an open-ended duct is considered. The reflected shock is developed after exiting the duct and impinging on a flat plate that is downstream of the duct. Two cases associated with the shock diffraction around the duct end are investigated for understanding the detailed flow structure and noise production due to the reflected shock/vortex interaction. One is a 90-degree diffraction; the other is a 180-degree diffraction. An Euler solver with a high-resolution scheme of weighted essential non-oscillation is used to study these complicated flow problems. The Euler solver is validated for the accuracy of numerical solutions with experimental data. For the study of the reflected shock/vortex interaction, the techniques of computational shadowgraph, schlieren image, and interferography are used. Detailed flow structures of reflected shock/vortex interactions are reported for different incident shock Mach numbers. An interesting result of a stagnant reflected shock wave downstream of the duct end is found for an incident shock Mach number equal to or greater than 1.4. For the incident shock Mach number below this critical value, the reflected shock will eventually enter the duct. Finally, the corresponding ring vortex is included for comparison with the planar case. It is found that the pressure increase at the vortex center due to the reflected shock in the axi-symmetric problem is less than that in the corresponding planar case .
 中文摘要.....................................Ⅰ英文摘要.....................................Ⅱ誌謝.........................................Ⅲ目錄.........................................Ⅳ表目錄.......................................Ⅵ圖目錄.......................................Ⅶ符號說明.....................................Ⅷ第一章 緒論§1.1簡介..................................... 1§1.2文獻回顧................................. 1§1.3研究動機與方法........................... 2第二章 數學模式§2.1流體統御方程式之積分式................... 4§2.2流體統御方程式之微分式................... 5§2.3廣義座標之統御方程式..................... 6§2.4渦量傳輸方程式........................... 8第三章 數值方法§3.1有限體積法...............................10§3.2加權基本不震盪法.........................11§3.3應用於尤拉系統(Euler system).............14§3.4時間積分.................................15§3.5時間間隔.................................15§3.6初始條件.................................16§3.7邊界條件.................................17第四章 結果與討論§4.1物理問題.................................19§4.2程式驗證.................................19§4.2.1與實驗的圖片和數據相比較...............23§4.2.2格點的選擇.............................23§4.3震波繞射問題.............................21§4.4震波與壁面、震波、渦漩之間的交互作用.....22§4.4.1震波與壁面及震波之間的交互作用.........22§4.4.2反射震波與渦漩之間的交互作用...........22§4.4.3震波對渦量的影響.......................25§4.5二維平面震波繞射流場與軸對稱流場之比較...26第五章 結論與建議............................28附錄A .......................................30附錄B .......................................32參考文獻.....................................33自述.........................................62著作權聲明...................................63
 [1] Abate, G. and Shyy, W., “Dynamic Structure of Confined Shocks Undergoing Sudden Expansion,” Progress in Aerospace Sciences, Vol. 38, 2002, pp. 23-42.[2] Dosanjh, D. S. and Weeks, T. M. “Interaction of a Starting Vortex as well as a Vortex Street with a Traveling Shock Wave,” AIAA Journal, Vol. 3, No. 2, pp. 216-223, 1965.[3] Ellzey, J. L. and Henneke, M. R., “The Shock-Vortex Interaction: The Origins of the Acoustic Wave,” Fluid Dynamics Research, Vol. 21, pp. 171-184, 1997.[4] Howard, L. and Mathews, D., “On the Vortices Produced in Shock Diffraction,” J Appl. Phys., Vol. 27, pp. 223-231, 1956.[5] Hillier, R., “Computation of Shock Wave Diffraction at a Ninety-Degree Convex Edge,” Shock Waves, Vol. 1, 1991, pp. 89-98.[6] Inoue, O. and Hattori, Y., “Sound Generation by Shock-Vortex Interactions,” J. Fluid Mech., Vol. 380, Feb. 1999, pp. 81-116.[7] Jiang, Z. and Takayama, K., “An Investigation into the Validation of Numerical Solutions of Complex Flowfields,” J. Comp. Phys., Vol. 151, 1999, pp. 479-497.[8] Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., Vol. 126, No. 1, 1996, pp. 202-228.[9] Kim, H. D. and Setoguchi, T., “Study of the Discharge of Weak Shocks from an Open end of a Duct,” J. Sound and Vibration, Vol. 226, No. 5, 1999, pp. 1011-1028.[10] Liang, S. M., Wang, K. C., and Takayama, K., “Numerical Study of Blast-wave Propagation in a Double-Bent Duct,” AIAA Journal, Vol. 40, No. 9, September 2002, pp. 1796-1802.[11] Mandella, M. Moon, Y. J. and Bershader, D., “Quantitative Study of Shock Generated Compressible Vortex Flows,” Proc. 15th Int. Symp. Shock Waves and Shock Tubes, pp. 471-477, 1985.[12] Matsuo, K., Miyazato, Y., and Kim, H. D., “Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows,” Progress in Aerospace Sciences, Vol. 33, Jan. 1999, pp. 33-100.[13] Pulliam, T. H., “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,” Notes for Computational Fluid Dynamics User’s Workshop, The University of Tennessee Space Institute, Tullahoma, Tennessee, March 12-16, 1984.[14] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comp. Phys., Vol. 43, pp. 357-372, 1981.[15] Szumoswki, A., Sobieraj, G., Selerowicz, W. and Piechna, J., “Starting Jet-Wall Interaction,” J. Sound and Vibration, Vol. 232. No. 4, 2000, pp. 695-702.[16] Schardin, H., “Measurement of Spherical Shock Waves,” Communications of Pure and Applied Mathematics, Vol. 7, pp. 223-243, 1954.[17] Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phy. Vol. 77,pp.439-471,1988[18] Thompson, W., “Time Dependent Boundary Conditions for Hyperbolic Systems,” J. Comp. Phys., Vol. 68, No. 1, 1987, pp. 1-24.[19] Yang, J., Kubota, T., and Zukoski, E. E., “An Analysis and Computational Investigation of Shock-Induced Vortical Flows,” AIAA Paper 92-0316, Jan. 1992.[20] Yang, J., Onodera, O. Takayama, K., “Holographic Interferometric Investigation of Shock Wave Diffraction,” Visualization Society of Japan, Vol. 14, pp. 85-88, 1994.[21] Yates, L. A., “Images Constructed from Computed Flowfields,” AIAA J., Vol. 31, No. 10, 1993, pp. 1877-1884.[22] 翁國振, “爆震波在雙彎管中傳遞之數值模擬,” 國立成功大學碩士論文, 2000.[23] 羅忠屏, “爆震波在九十度凸面轉角傳遞之流場數值模擬, ” 國立成功大學碩士論文, 2001.[24] 陳驊, “管口爆炸波與渦漩交互作用及消音的探討,” 國立成功大學博士論文, 2002.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 管口爆炸波與渦漩交互作用及消音探討 2 爆震波在雙彎管中傳遞之數值模擬 3 爆震波在九十度凸面轉角傳遞之流場數值模擬 4 平面震波於楔形體與垂直鰭片模型所產生反射-繞射現象之探討 5 數值分析震波對壁面熱傳效應之影響 6 肥皂膜中震波渦流交互作用之可視化研究(PartI);體外震波治療儀對軟骨組織增生之探討(PartII) 7 反射震波對薄層之解析關係研究

 無相關期刊

 1 汽車排氣管之數值模擬與流場分析 2 多孔噴嘴在漩渦效應下之霧化現象 3 車輛排氣管之流場與噪音分析 4 體外震波碎石機改良結石追蹤系統之性能評估 5 具奇點結構之內混式霧化器噴霧特性研究 6 聯胺熱分解之反應動力分析 7 包埋微帶天線於複合層板內之電磁模式分析 8 簡諧振動子之動態能量分析 9 基於二維微機電慣性元件定位系統之初步研究 10 反射式全像體積之研究 11 過氧化氫觸媒雙推進劑熱機引擎之研發 12 突張管內爆炸波與渦漩交互作用之數值研究 13 骨疾用之震波產生器之設計與性能評估 14 利用GPRS無線通訊作為UAV之雙向資料傳輸介面 15 以FPGA晶片實現遙控直昇機之模糊控制器

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室