跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈政憲
研究生(外文):Cheng-Hsien Shen
論文名稱:聯胺熱分解之反應動力分析
論文名稱(外文):THE ANALYSIS OF THERMAL DISSOCIATION OF HYDRAZINE
指導教授:袁曉峰袁曉峰引用關係
指導教授(外文):Hsiao-Feng Yuan
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:164
中文關鍵詞:實驗設計法完整反應機構分解聯胺
外文關鍵詞:and experimental designhydrazinedecompositiondetailed mechanism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
  聯胺(Hydrazine)是一種廣泛應用在許多工業的化學品特別是在火箭推進劑上,本文主要目的在於建立一個均態(homogeneous)完整聯胺嘗試反應機構(trial mechanism),透過完整的反應動力模式來分析,並且比對Michel的震波實驗所量測聯胺分解反應的半生期(the half-life time)以作為計算對照,模擬實驗溫度範圍為1100-1600K壓力範圍為6-10 atm。本研究將統計方法中的方案轉置(solution mapping)使用在最佳化分析流程中,最後得到完整N/H反應機構包括12個物種(species)和29個基元反應式(elementary reactions),此聯胺反應機構在相同實驗條件下其模擬結果和Michel的實驗結果相符。

  經由路徑分析在低溫下(900-1000K),聯胺的分解經由起始反應(R-14)產生NH2而進行,再經由傳遞反應(propagation reaction) (R60) N2H4+NH2→N2H3+NH3和連鎖斷裂反應(chain-breaking )(R56) N2H3+M→NH+NH2+M兩個重要的反應接續進行聯胺的分解,在聯胺分解過程中出現一段相當長的誘導時間(induction period),此現象即所謂的連鎖反應(chain reaction)特徵,而NH2即為反應過程中的連鎖載體(chain carrier);另外,在高溫下聯胺的起始分解反應(R-14)隨著溫度的增加而將分解產生更多的NH2,使得聯胺分解反應在高溫下加速完成,此分解由原先的”連鎖反應” 特徵轉變成為一個近似一階衰減(first-order decay)反應模式。在路徑分析過程中發現壓力和溫度相較下對於聯胺分解反應路徑無明顯影響,然而,隨著壓力的增加聯胺的分解速率隨之加快。利用聯胺分解近似一階衰減的模式來計算聯胺半生期,本研究推論出三個在不同壓力下的聯胺分解反應速率常數,如下所示:

K1,1atm=9.30xE+10exp(-157(kJ/mole)/RT); at P=1atm
K1,5atm=7.58xE+11exp(-173(kJ/mole)/RT); at P=5 atm
K1,10atm=2.09xE+12exp(-179(kJ/mole)/RT);at P=10atm.
計算溫度範圍為1000到1600K。而反應常數中巨觀活化能(the apparent activation energy)隨壓力變化而變化範圍為157-179 kJ/mole。

  由本研究所提出的完整聯胺反應機構再加入其他相關的基元反應,組成共計21個物種和125反應式的N/H/O反應機構,利用此反應機構來模擬加水對於聯胺分解的影響,結果顯示加水對於聯胺的分解反應路徑並無明顯影響,水在聯胺反應過程中只扮演著吸收熱源的角色。另外由分析中得到添加水和增加壓力均會造成抑制氨分解率(ammonia dissociation ratio,Xd)影響,其中氨分解率是聯胺推進器系統重要設計參數。
  Hydrazine is widely used in many industries especially in rocket propulsion. The main purpose of this thesis is to develop a homogeneous detailed hydrazine decomposition mechanism. Detailed kinetic modeling was used to justify the mechanism with the half-life times of hydrazine decomposition measured by Michel’s shock tube experiment at 1100K-1600K and 6atm-10atm. Statistical method of solution mapping was employed to simplify the modeling process. The present verified N/H mechanism involves 12 species and 29 elementary reactions. The results calculated by the proposed mechanism adequately satisfy Michel’s observation of hydrazine decomposition at all conditions.

  From path analysis, after NH2 first produced by (R-14) initially, the reaction N2H4+NH2→N2H3+NH3 (R60) follows by the branching reaction N2H3+M→NH+NH2+M (R56) were significant for N2H4 dissociation at low temperatures(900K-1000K). It appears a long induction period of hydrazine decomposition. That is, the characteristics of chain reaction appeared as NH2 to be the chain carrier. At higher temperatures, the rate of (R-14) as well as the rates of the dissociation of intermediate species including NH2 rapidly increased. The characteristics of “chain reaction” diminished and the overall reaction behavior is closing to first-order decay. In this analysis, the pressure effect on reaction path was not obvious, however, it increases the decomposition rate of hydrazine. By matching the calculated half-life times and modeling the dissociation of hydrazine as a first-order decay process ( ), this research deduced the overall rate constants at three different pressures with Arrehnius expression as
K1,1atm=9.30xE+10exp(-157(kJ/mole)/RT); at P=1atm
K1,5atm=7.58xE+11exp(-173(kJ/mole)/RT); at P=5 atm
K1,10atm=2.09xE+12exp(-179(kJ/mole)/RT);at P=10atm.
at temperatures 1000K-1600K, which the apparent activation energy was increased with increasing pressures.

  The mechanism of N/H/O reaction system with 21 species and 125 elementary reactions was also constructed to simulate the effect of water addition to the dissociation of hydrazine. The results showed the presence of water do not alter the dissociation path and acted as a thermal sink at the temperatures investigated. Water addition and increasing pressure suppress the equilibrium ammonia dissociation ratio (Xd), an index related to hydrazine thruster’s performance.
Contents …………………………………………………………………………………XII
List of Tables………………………………………………………………………… XIV
List of Figures…………………………………………………………………………XV
List of Symbols…………………………………………………………………………XVII


Chapter page
I. Introduction…………………………………………………………………1
1.1. Background……………………………………………………………………1
1.2. Measurement Approaches……………………………………………………2
1.3. Hydrazine Chemical and Physical Properties…………………………5
1.4. NH2 Radical Absorption Wavelength…………………………………… 6
1.5. Motivation……………………………………………………………………… 7
1.6. Research Flow Chart……………………………………………………………7

II. Chemical Kinetic Simulation…………………………………………… 12
2.1 Constant-Pressure Adiabatic Modeling…………………………………12
2.2 Computational Difficulty: Stiffness………………………………… 13
2.3 Thermochemical Data……………………………………………………… 14
2.4 Pressure-Dependent Reactions……………………………………………15
2.5 Development of Trail Mechanism ……………………………………… 18
2.6 Sensitivity Analysis………………………………………………………19
2.7 Experimental Data Analysis …………………………………………… 21
2.8 Solution Mapping……………………………………………………………26
2.9 Experimental Design……………………………………………………… 28
2.9.1 The One-half Fraction of the Factional Design at Two Level……28
2.9.2 Identification of the Active Parameters…………………………… 29

III. Results and Discussion……………………………………………………… 37
3.1 Response surface……………………………………………………………37
3.2 Optimization Results………………………………………………………38
3.3 Comparison Results with Other Reaction Models…………………… 45
3.4 Reaction Paths and Analyses…………………………………………… 46
3.5 Detailed Mechanism Reduction……………………………………………52

IV. Applications………………………………………………………………………54
4.1 Decomposition of the Hydrazine-Water Mixture………………………55
4.2 The Activation Energy of the Hydrazine and Hydrazine-Water
Decomposition……………………………………………………………… 60
4.3 Ammonia Dissociation………………………………………………………66

V.Conclusions and Future Work ……………………………………………………66

Reference ………………………………………………………………………………69

Tables……………………………………………………………………………………76

Figures………………………………………………………………………………… 97

Appendix A…………………………………………………………………………… 144
Experimental Apparatus and Results …………………………………………… 144
A.1 Shock tube…………………………………………………………………………144
A.2 Optical detector and instrument system……………………………………146
A.3 Experimental procedure and results ……………………………………… 148

Appendix B…………………………………………………………………………… 155
Appendix C…………………………………………………………………………… 160

Publication ……………………………………………………………………………163
VITA ……………………………………………………………………………………164
Alexander, M. H., Dagdigian, P. J., Jacox, M. E., Kolb, C. E., Melius, C. F., Rabitz, H., Smooke, M. D. and Tsang, W., "Nitramine Propellant Ignition and Combustion Research" Prog. Energy Combust. Sci., Vol. 17, pp. 261-296, 1991.

Allen, M. T., Yetter, R. A. and Dryer, F. L., "The Decomposition of Nitrous Oxide at 1.5�T P�T 10.5 and 1103�T T�T 1173K" International Journal of Chemical Kinetics, Vol. 27, pp. 883-909, 1995.

Arrhenius, S. Z. Phys. Chem., Vol.4, p.226, 1889; “A translation of foir pages of this paper which deal with the theory of temperature dependence is included in M. H. Back and K. J. Laider, Selected Readings in Chemical Kinetics, pp.31-35, Pergamon, Oxford, 1967.

Baulch, D. L., Warnatz, J., "Summary Table of Evaluated Kinetic Data For Combustion Modeling: Supplement 1" Combustion and Flame, Vol. 98, pp. 59-79, 1994.

Bhaskaran, K. A., Gupta, M. C. and Just, T.H., "Shock Tube Study of the Effect of Unsymmetric Dimethyl Hydrazine on the Ignition Characteristics of Hydrogen-Air Mixtures", Combustion and Flame, Vol. 21, pp. 45-58, 1973.

Box, G. E. P., Hunter, W. G. and Hunter, J. S., “Statistics for Experiments: An Introduction to design, Data Analysis and Modeling Building”, Wiley, New York, 1978.

Box, G. E. P., Draper, N. R., “Empirical Model-Building and Response Surfaces”, John Wiley & Sons, Inc., 1987.

Borrell, P., Cobos, C. J., and Lnther, K., "Falloff Curve and Specific Rate Constant for the Reaction NO2+NO2=N2H4" J. Phys. Chem., Vol. 92, p. 4377, 1988.

Bozzelli, J. W. and Dean, A.M., "O+NNH: Possible New Route for NOx Formation in Flames", International Journal of Chemical Kinetics, Vol. 27, pp. 1097-1109, 1995.

Bozzelli J. W., "Analysis of The Reactions H+N2O and NH+NO: Pathways and Rate Constants Over A Wide Range of Temperature And Pressure" 25th Sympostum on Combustion, pp. 965-974, 1994.

Brunning J., Frost, M. J. and Smith, I. W. "Kinetic Measurements on the System: Time-Resolved Infrared Laser Absorption, " International Journal of Chemical Kinetics, Vol. 20, p. 957, 1988.

Burcat, A. W. L. Gardiner, Jr., Ed., Combustion Chemistry, Springer-Verlag, New York, p. 455, 1984.

Burcat, A., "ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/", 2001.

Carrington, T. and Davidson, N., "Shock Waves in Chemical Kinetics: the Rate of Dissociation of N2O4", J. Phys. Chem., Vol. 57, p. 418, 1953.

Assa Lifshitz and Carmen Tamburu, Perter Frank and Thomas Just, "The Reaction CH3+NO�_HCN+H2O Experimental and Modeling Study" J. Phys. Chem., Vol. 97, pp. 4085-4090, 1993.

Cheng, Chao-Kai, "A Study of Quantitative NO LIF in High-Pressure Methane Flames", Ph. D. thesis Institute of Aeronautic and Astronautics National Cheng Kung University, Taiwan, ROC, 1998.

Chen, Shun-Yu, “Regression Analysis”, 2nd Edition, Hai-Tai Bookstore Company, Taiwan, ROC, 1997.

Cook R. Dennis and Weisberg, Sanford, “Residuals and Influence in Regression”, Chapman and Hill Publish, 1982.

Davidson D. F. and Hanson R. K., "High Temperature Reaction Rate Coefficients Derived From N-Atom ARAS Measurements and Excimer Photolysis of NO", International Journal of Chemical Kinetics, Vol. 22, p. 843, 1990.

Davidson D. F. and Hanson R. K., “Shock Tube Measurements of the Rate Coefficient for N+CH3�_H2CN+H Using N-Atoms ARAS and Excimer Photolysis of NO”, 23th Symposium on Combustion, Vol. 23, p. 267, 1990.

Dean A. M. and Bozzelli J. W., “Gas-Phase Combustion Chemistry”, Gardiner W. C. Editor, Springer-Verlag Inc., Chapter 2, p. 125, 2000.

Dean, A. M., Chou, M. S. and Stern, D., "Kinetics of Ammonia Flames", International Journal of Chemical Kinetics, Vol. 16, p. 633, 1984.

Diau Eric W. & Lin M.C., "Thermal Reduction of NO by H2: Kinetic Measurement and Computer Modeling of the HNO+NO Reaction", International Journal of Chemical Kinetics, Vol. 27, pp. 867-881, 1995.

Diesen, R. W., "Mass Spectral Studies of Kinetics Behind Shock Waves. II. Thermal Decomposition of Hydrazine" J. Chem. Phys., Vol. 39, No. 9, p. 2121, 1963.

Dougals C. Montgomery, “Design and Analysis of Experiments”, 3th Ed., John Wiely & Sons Ins., 1991.

Draper, Norman Richard and Smith, Harry, “Applied Regression Analysis”, 3th Ed., John Wiely & Sons Ins., 1998.

Eberstein I. J. and Glassman I., "The Gas-Phase Decomposition of Hydrazine and Its Methyl Derivatives", 10th Symposium on Combustion, pp. 365-374, 1965.

Elgin, J. C., and H. S. Taylor, “The Photosensitized and Photochemical Decomposition of Hydrazine”, J. Am. Chem. Soc., Vol. 51, pp. 2059-2078, 1929.

Ermolin N. E. and Fomin V. M., "Kinetic Mechanism of the Reaction of NH2 with O2 in O-, H-, and N- Containing Flames. II. Estimation of Kinetic Parameters of the Stages Involving NH2O2, HNOOH, and NH2O", Combustion, Explosion, and Shock Waves, Vol. 30, No. 3, pp. 298-305, 1994.

Ermolin N. E., "On the Kinetic Mechanism of the Reaction of NH2 with O2 in O-, H-, and N-Containing Flames. 1.Kinetic Parameters of the NH2+O2=HNO+OH Reaction", Combust Explosion and Shock Waves, Vol. 30, No. 1, pp. 59-64, 1994.

Etzkorn T., Muris S. and Wolfrum J., "Destruction and Formation of NO in Low Pressure Stoichiomeric CH4/O2 Flames", 24th Symposium on Combustion, pp. 925-932, 1992.

Fiedler M. and Hess P., "High Precision Study of Chemical Relaxation in the System N2O4=2NO2 by Photoacustic Resonance Spectroscopy", J. Chem. Phys., Vol. 93, p. 8693, 1990.

Franklach, M., “Combustion Chemistry”, Edited by W. C. Gardiner, Jr., Chap 7, Springer-Verlag, New York Berlin, 1984.

Frenklach Michael and Bornside David E., "Shock-Initiated Ignition in Methane-Propane Mixtures" Combustion and Flame, Vol. 56, pp. 1-27, 1984.

Frenklach Michael, "Systematic Optimization of a Detailed Kinetic Model Using a Methane Ignition Example" Combustion and Flame, Vol. 58, pp. 69-72, 1984.

Miller, D. and Frenklach M., "Sensitivity Analysis and Parameter Estimation in Dynamic Modeling of Chemical Kinetics", International Journal of Chemical Kinetics, Vol. 15, pp. 677-696, 1983.

Gardiner, W. C., Jr., “Gas-Phase Combustion Chemistry”, Springer-Verlag, Inc., 2000.

Gardiner, W. C., Jr., “Introduction to Combustion Modeling”, in Combustion Chemistry, Edited by W. C. Gardiner, Jr., Springer-Verlag pressed, 1984.

Gardiner, W. C. Jr., Walker B. F., and Wakefield C. B., “Shock Waves in Chemistry”, A. Lifshitz, Ed., Dekker, New York, p. 9319, 1981.

Gaydon A.G., “The Shock Tube in High-Temperature Chemical Physics”, Reinhold Publishing, 1963.

Gehring M., Hoyermann K., Schacke H., and Woefrum J., "Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H-N-O System", 14th Symposium on Combustion, pp. 99-105, 1972.

Genich, A. P., Zhirnov, A. A., and Manelis, G. B. Tsang Wing, International Journal of Chemical Kinetics, Vol. 10, pp. 41-66, 1978.

Gerhing M., Hoyermann K., Wagner H. GG. and Wolfrum J., “The Reaction of Atomic Hydrogen with Hydrazine”, Ber. Binsenges., Physik. Chem., Vol. 75, p. 1287-1294, 1971.

Gillbert. M., Jet Propulsion Laboratory Progress Report 20-318, 1957.

Glarborg Peter & Miller J. A., "The Reaction of Ammonia with Nitrogen Dioxide in a Flow Reactor: Implications for the NH2+NO2 Reaction", International Journal of Chemical Kinetics, Vol. 27, pp. 1207-1220, 1995.

Glarborg Peter and Johansen Kimdam, "A Flow Reactor Study of HNOCO Oxidation Chemistry", Combustion and Flame, Vol. 98, pp. 241-258, 1994.

Glarborg Peter and Miller J.A., "Modeling the Thermal DeNOx Process in Flow Reactors. Surface Effects and Nitrous Oxide Formation", International Journal of Chemical Kinetics, Vol. 26, pp. 421-436, 1994.

Godon, S. and Mcbride, B. J., NASA SP-273, 1971.

Goyal G., Paul P. J. and Mukunda H. S., "Computational Studies on One-Dimensional Laminar, Premixed Hydrogen-Nitric Oxide Flames", Combustion and Flame, Vol. 88, pp. 28-36, 1992.

Gri_v2.2, Bowman, C. T., Hanson, R. K., Gardiner, W. C., Jr., Lissianski, V., Frenklach, M., Goldenberg, M., and Smith, G. P., "GRI-Mech : An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning" Refer to the GRI-Mech homepage at http://www.me.berkeleley.edu/gri_mech/.

Gray, P., Lee, J. C., Leach, H. A., Taylor, D. C., “The Propagation and Stability of the Decomposition Flame of Hydrazine”, 6th Symposium on Combustion, p. 255, 1956.

Halpern J. B., Hancock G., Lenzi M. and Welge K. H., "Laser Induced Fluorescence From NH2(2A1). State Selected Radiative Lifetimes and Collisional De-excitation Rates", J. Chem. Phys., Vol. 63, No. 11, p. 4808, 1975.

Hanes M. H. and Bair E. J. “Reactions of Nitrogen-Hydrogen Radicals. I. NH2 Recombination in Decomposition of Ammonia”, J. Chem. Phys., Vol. 38, pp. 672-676, 1963.

Hanson, R. K. and Salimian S., “Combustion Chemistry”, Gardiner W. C. edited, Springer-Verlag Inc. chap. 6, p. 361, 1984.

Hanson R. K., S. Salimian, G. Kychakoff, and R. A. Booman, "Shock-tube absorption measurements of OH using a remotely located dye laser", Appl. Opt., Vol.22, No. 5, p. 641, 1983.

He Y., Liu Xiaoping, Lin M.C. and Melius C. F., "Thermal Reaction of HNCO with NO2 at Moderate Temperatures", International Journal of Chemical Kinetics, Vol. 25, pp. 845-863, 1993.

Hemberger R., Muris S., Pleban K. U. and Wolfrum J., "An Experimental And Modeling Study of the Selective Noncatalytic Reduction of NO by Ammonia in the Presence of Hydrocarbons", Combustion and Flame, Vol. 99, pp. 660-668, 1994.

Hindmarsh, A. C., "Livermore Solver for Ordinary Differential Equations", Lawrence Livemore Laboratory, Report in Preparation, Code Released under Transaction No. 3342 for Unlimited Release, 1980(a).

Hindmarsh, A. C., ACM-signum New-sletter, Vol.15, No.4, pp.10-11, 1980(b)

Hochgreb S. and Dryer F. L., "A Comprehensive Study on CH2O Oxidation Kinetics ", Combustion and Flame, Vol. 91, pp. 257-284, 1992.

Hou, zu-guang, “A Study of the Branching Reactions in Hydrogen/Oxygen Combustion”, Master thesis, Institute of Aeronautic and Astronautics National Cheng Kung University, Taiwan, ROC, 1993.

Jost W., Aeronautical Research Laboratories Report ARL 62-330, 1962.

Kohse-Hoinghaust K., Davidson D. F., Chang A. Y., and Hanson R. K., "Quantitative NH2 Concentration Determination in Shock Tube Laser-Absorption Experiments", J. Quant. Spectrosc. Radiat. Transfer, Vol. 42, No. 1, pp. 1-17, 1989.

Khe, Vam Pham, J. C. Soulignac, and R. Lesclaux, "Pressure and Temperature Dependence of NH2 Recombination Rate Constant", J. Phys. Chem., Vol. 81, No. 3, p. 210, 1977.

Kleinbaum, David G. and Kupper, Lawrence L, “Applied Regression Analysis and Other Multivariable Methods”, 2nd Ed., PWS-KENT Publishing Company, 1988.

Konnov A. A. and J. De.Ruyck, "Kinetic Modeling of the Decomposition and Flames of Hydrazine", Combustion and Flame, Vol. 124, pp. 106-126, 2001.

Kuo K. K., “Principles of Combustion”, John Wiley & Sons Inc., 1986.

Laider, Keith J., “Chemical Kinetics”, 2nd , Harper & Row Publishers Inc., 1989.

Lawver B. R., “Some Observations on the Combustion of N2H4 Droplets”, AIAA Journal, Vol. 4, No. 4, p. 659, 1966.

Lindemann, F., Trans. Faraday Soc., Vol. 17, p. 598, 1992.

Lindstedtp P., Lockwood F. C. and Selim M. A., "Detailed Kinetic Modeling of Chemistry and Temperature Effects on Ammonia Oxidation", Comb. Sci. Tech., Vol. 99, pp. 253-276, 1994.

Marinov Nick M. and Malte Philip C., "Ethylene Oxidation in a Well-Stirred Reactor", International Journal of Chemical Kinetics, Vol. 27, pp. 957-986, 1995.

Markwalder B., Gozel P. and H. van den Bergh, "Temperature-jump Measurements on the Kinetics of Association and Dissociation in weakly Bound Systems: N2O4+M=NO2+NO2+M", J. Chem. Phys., Vol. 97, pp. 5472-5479, 1992.

Mallard, W. G., Wesley, F., Herron, J. T., Hampson, R. F., and Frizzell, D. H., “NIST Chemical Kinetics DataBase: Version 5.0”. National Institute of standards and Technology, Gaithersburg, 1993.

McHale, E. T., Knox, B. E., and Palmer, H. B., "Determination of The Decomposition Kinetics of Hydrazine Using A Single- Plus Shock Tube", 10th Symposium on Combustion, pp. 341-351, 1965.

Mertens John D., Hanson R. K. & Bowman C. T., "A Shock Tube Study of Reactions of NCO with O and NO Using NCO Laser Absorption", 24th Symposium On Combustion, pp. 701-710, 1992.

Meyer, E., Olschewski, H. A., Tore, J., and Wagner, H. G., "Investigation of N2H4 and H2O2 Decomposition in Low and High Pressure Shock Waves", 12th Symposium on Combustion, pp. 345-355, 1968.

Michaud Melissa G. and Westmoreland Phillip R., "Chemical Mechanisms of NOx Formation For Gas Turbine Conditions", 24th Symposium On Combustion, pp. 879-887, 1992.

Michel K. W., and Wagner H. GG., "The Pyrolysis and Oxidation of Hydrazine Behind Shock Waves", 10th Symposium on Combustion, pp. 353-364, 1965.

Miller, J. A. and Bowman, C. T., "Mechanism and Modeling of Nitrogen Chemistry in Combustion", Prog. Energy Combust. Sci.,Vol. 15, pp. 287-338, 1989.

Miller, J. A., Smooke. M. D., Green R. T., Kee R. J., "Kinetic Modeling of the Oxidation of Ammonia in Flames", Combust, Sci. Tech., Vol. 34, pp. 149-176, 1983.

Moberly William H., "Shock Tube Study of Hydrazine Decomposition", J. Phys. Chem., Vol. 66, pp. 366-368, 1962.

Pagsberg P. B., Eriksen J. and Christensen, H. C., "Pulse Radiolysis of Gaseous Ammonia-Oxygen Mixtures", J. Phys. Chem., Vol. 83, No. 5, pp. 582-590, 1979.

Glarborg P., Kim, D. J., Soren, H. J., "A Flow Reactor Study of HNOCO Oxidation Chemistry", Combustion and Flame, Vol. 98, pp. 241-258, 1994.

Robert, C. W., “Handbook of Chemistry and Physics”, 6th Ed., CRC press Inc., 1980.

Sausa, R. C., Anderson, W. R., Dayton, D. C. and Faust, C. M., "Detailed Structure Study of a Low Pressure, Stoichiometric H2/N2O/Ar Flame", Combustion and Flame, Vol. 94 pp. 407-425, 1993.

Sawyer, R. F., and Glassman, I., “Gas-phase Reactions of Hydrazine with Nitrogen Dioxide, Nitric Oxide and Oxygen”, 11th Symposium on Combustion, pp. 861-869, 1967.

Schiavello M. and Volpi G. G., "Reactions of Hydrogen Atoms with Hydrazine, Ammonia and Nitrous Oxide", J. Chem. Phys., 37(7), pp. 1510-1513, 1962.

Schmidt, E. W., “Hydrazine and Its Derivatives”, Wiley-International publication, 1983.

Siegel, A. F. and Morgan, C. J., “Statistics and Data Analysis: An Introduction”, 2nd Ed., John Wiely & Sons, 1996.

Stief L. J., "Ratio of Disproportionation to Combination of N2H3 Radicals", J. Chem. Phys., Vol. 52, No. 9, pp. 4841-4845, 1970.

Stothard, N., Humpfer, R., and Grotheer, H. H., "The Multichannel Reaction NH2+NH2 at Ambient Temperature and Low Pressures", Chem. Phys. Letters., Vol. 240, p. 474, 1995.

Votsmeier M., Song S., Davidson D. F., Hanson R. K., "Shock Tube Study of Monomethylamine Thermal Decomposition and NH2 High Temperature Absorption Coefficient", International Journal of Chemical Kinetics, Vol. 31, No. 5, p. 323-330, 1998.

Votsmeier M., Song S., Davidson D. F., Hanson R. K., "Sensitive Detection of NH2 in Shock Tube Experiments Using Frequency Modulation Spectroscopy", International Journal of Chemical Kinetics, Vol. 31, No. 6, pp. 445-453, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top