(3.227.235.183) 您好!臺灣時間:2021/04/13 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韓亞軒
研究生(外文):Ya-Shuan Han
論文名稱:多孔噴嘴在漩渦效應下之霧化現象
論文名稱(外文):Atomization Performance of Mutiple-Orifice Nozzle Under Swirler Effect
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:129
中文關鍵詞:漩渦器多孔霧化氣助式噴嘴
外文關鍵詞:swirlair-assist atomizeratomizationmultiple-orificespray
相關次數:
  • 被引用被引用:3
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
  本研究探討氣助式多孔噴嘴配備不同漩渦器對霧化特性之影響。漩渦器主要功能是令液體產生側向動量,形成液體薄膜化之霧化機制,以提昇噴嘴之霧化品質。本實驗所採用之漩渦器分別具有10mm、20mm及30mm等三種長度,噴嘴孔口直徑為0.8mm之奇點式孔口結構,孔數分為八孔、六孔及四孔等三種不同排列方式,噴嘴材質採用不�袗�及硬化塑膠等不同材質。噴霧粒徑分佈利用INSITEC RT-sizer粒徑分析儀做即時量測。
  實驗結果顯示,配備10mm漩渦器之噴嘴,其液體流經漩渦器流道較短,損失的動能較少,有較佳的平均粒徑(SMD)。例如在水壓5.0bar,氣壓6.0bar下,配備10mm、20mm、30mm漩渦器噴嘴之平均粒徑分別為6.30μm、6.48μm及7.06μm。在漩渦器的裝配方式方面,實驗結果發現,固定式漩渦器因不需以部分流體之能量去轉動漩渦器,故固定式漩渦器有較佳之霧化特性,其平均粒徑與標準差均較小。在多孔噴頭孔口幾何排列方式對霧化特性之影響方面,實驗結果顯示,在相同的孔徑,相同的孔數,相同的操作壓力下,改變孔口排列方式就可改變噴霧流場中之霧化機制,進而改善噴霧器的粒徑大小與分佈範圍。研究結果發現雙層交叉八孔噴頭(cn8)排列方式可得最佳之霧化效果,在不同的操作壓力下,此種(cn8)噴嘴均可產生較佳的霧化品質,例如在氣壓6.0bar,水壓5.0bar,cn8噴嘴的平均粒徑為5.82μm,標準差為8.95μm,比其他排列方式顯著提昇。噴嘴材質方面,比較不�袗�和硬化塑膠兩種材質對霧化特性之影響,發現不�袗�為親水性材質,當水通過流道時會產生擾動和薄膜化的現象,增加霧化機制使霧化品質提昇。綜合以上實驗的結果顯示,雙層交叉式孔口排列方式配備較短漩渦器之親水性噴霧器具有較佳的霧化特性。
  This research program investigates the effects of multiple orifices on atomization performance of an air-assist atomizer with swirler effect. The function of the swirler is to enhance the lateral momentum of the liquid phase to, produce a prefilming atomization mechanism. Experiments compare the atomization performance of the swirlers with length of 10mm, 20mm and 30mm, respectively. The orifices of the nozzle are designed in a singularity configuration with 0.8mm in diameter of the nozzle. There are 4, 6 and 8 orifices and designed in different patterens. The atomizer’s materials are stainless steel and plastic. The particle size of the spray is measured by INSITEC RT-sizer .
  Results show that the atomizer with 10mm swirler has better performance because it loses less kinetic energy due to the shorter channel in the swirler. As a typical example, the mean particle sizes produced by the atomizers with 10mm, 20mm and 30mm swirler are 6.30μm, 6.48μm and 7.06μm, respectively. Results also show that the stationary-type swirler has better atomization performance compared to the rotating one. The kinetic energy of atomization gas is partially transfer to the rotating swirler, hence the atomization energy transferred to the liquid phase is less. It turns out that the mean particle size and the standard deviation(σ)associated with the stationary swirler are smaller. The geometric arrangement of multiple orifices also influence the atomization performance. Results show that the nozzle with eight orifices arranged in double-crossing pattern (ie, cn8-nozzle) results in the best atomization performance. For example, the cn8-nozzle produces spray with mean particle size and standard deviation of 5.82μm and 8.95μm, respectively, under test condition of (Pa , Pw)=(6.0,5.0) bar. Tests on the nozzle material show that the nozzle with stainless steel has better atomization performance. It seems that stainless steel is hydrophilic and is useful in the enhancement of the prefilming mechanism of the liquid phase during the atomization processes. In summary, the nozzle made of hydrophilic material with doubt-crossing orifices and short swirler has the optimum atomization performance.
中文摘要
英文摘要
誌謝
目錄..........................................................................Ⅰ
表目錄........................................................................Ⅳ
圖目錄........................................................................Ⅴ
符號說明......................................................................Ⅹ
第一章 緒論.................................................................. 1
1-1 簡介...................................................................... 1
1-2 文獻回顧.................................................................. 2
1-2-1霧化之原理....................................................... 2
1-2-2液體碎化過程..................................................... 3
1-2-3噴霧流場中之空氣動力現象......................................... 7
1-2-4雙流體式霧化器................................................... 8
1-2-4渦漩式霧化器.............................................................11
1-3研究動機與目的.............................................................14
第二章 實驗設備及儀器.........................................................16
2-1 實驗設備..................................................................16
2-1-1噴嘴性能測試台架.................................................16
2-1-2高壓液體供應系統.................................................16
2-1-3高壓氣體供應系統.................................................17
2-1-4 抽氣整流系統....................................................17
2-1-5 霧化裝置........................................................17
2-2 量測儀器..................................................................18
2-2-1 RT-Sizer粒徑分析儀..............................................18
2-2-2 RT-Sizer粒徑分析儀校正記錄......................................19
2-2-3 攝影器材及影像處理系統..........................................19
2-3主要量測參數...............................................................20
第三章 實驗步驟及方法.........................................................22
3-1 實驗量測條件設定..........................................................22
3-2 流量的量測................................................................22
3-3 視流場的觀察..............................................................23
3-4 Insitec粒徑分析儀的量測...................................................23
3-5 數據取樣與分析............................................................24
3-6 實驗誤差..................................................................24
第四章 結果與討論.............................................................26
4-1 噴霧流場觀測..............................................................26
4-2 漩渦效應對霧化特性之影響..................................................28
4-2-1 漩渦器對霧化特性之影響...............................................28
4-2-1-1 漩渦器長度對氣液流量之影響.......................................28
4-2-1-2 漩渦器長度對氣液質量比之影響.....................................29
4-2-1-3 漩渦器長度對平均粒徑(SMD)之影響................................29
4-2-1-4 漩渦器長度對Dv10、Dv50、Dv90之影響...............................31
4-2-1-5 漩渦器長度對標準差之影響.........................................32
4-2-1-6 漩渦器長度對平均粒徑與氣液質量比之關係...........................33
4-2-2 固定式與旋轉式漩渦器對霧化特性之影響.................................34
4-2-2-1 固定式與旋轉式漩渦器對氣液流量之影響.............................34
4-2-2-2 固定式與旋轉式漩渦器對氣液質量比之影響...........................35
4-2-2-3 固定式與旋轉式漩渦器對噴霧粒徑之影響.............................36
4-2-2-4 固定式與旋轉式漩渦器對標準差之影響...............................37
4-2-2-5 固定式與旋轉式漩渦器對平均粒徑與氣液質量比之關係.................37
4-3 多孔效應對霧化特性之影響..................................................38
4-3-1 漩渦式霧化器加裝多孔噴頭對霧化特性之影響........................38
4-3-1-1 漩渦式霧化器加裝四孔、六孔、八孔之噴嘴對氣液流率之影響...........39
4-3-1-2 漩渦式霧化器加裝四孔、六孔、八孔之噴頭對氣液質量比之影響.........39
4-3-1-3 漩渦式霧化器加裝四孔、六孔、八孔之噴嘴對粒徑之影響...............39
4-3-1-4 漩渦式霧化器加裝四孔、六孔、八孔之噴頭對標準差之影響.............40
4-3-1-5 漩渦式霧化器加裝四孔、六孔、八孔之噴嘴對平均粒徑與氣液質量比之關
係...............................................................40
4-3-2多孔噴嘴孔口幾何排列方式對霧化特性之影響.........................41
4-3-2-1 n8、cn8、dn8三種噴嘴對氣液流量之影響.............................41
4-3-2-2 n8、cn8、dn8三種噴嘴對氣液質量比之影響...........................42
4-3-2-3 n8、cn8、dn8三種噴嘴對粒徑之影響.................................42
4-3-2-4 n8、cn8、dn8三種噴嘴對標準差之影響...............................43
4-3-2-5 n8、cn8、dn8三種噴嘴對平均粒徑與氣液質量比之關係.................44
4-4不同材質霧化器對霧化特性之影響.............................................44
4-4-1不同材質霧化器對氣液流量之影響...................................45
4-4-2不同材質霧化器對氣液質量比之影響.................................46
4-4-3不同材質霧化器對粒徑之影響.......................................46
4-4-4不同材質霧化器對標準差之影響.....................................47
4-4-5不同材質霧化器對平均粒徑與氣液質量比之關係............................47
4-5 各噴嘴之間的比較..........................................................48
第五章 結論...................................................................50
參考文獻......................................................................52
1. 古晉光, 加濕工程應用手冊, 翰寧股份有限公司, pp.10-28, 2000.
2. A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing
Corporation, New York, 1983.
3. A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation,
New York, 1989.
4. R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean
of Standards Journal of Research, Vol.6, pp.369-376, 1930.
5. N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and
Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18,
pp.203-214, 1963.
6. B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the
Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid
Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114,
pp.39-45, 1992.
7. C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density
on the distortion and breakup mechanism of dropsin high speed gas stream”,
International Journal of Multiphase Flow 26(2000) 229-244.
8. R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on
Combustion, Rein-hold, New York, pp.687-701, 1957.
9. P.C.H Miller, M.C. Butler Ellis, “Effects of formulation on spray nozzle
performance for applications from ground-based boom sprayers”, Crop
Protection 19 (2000) 609-615.
10. G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on
the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech.,
Vol.57, part 4, pp.671-672, 1973.
11. Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker
Hannifin Report No.7901/2-0, 1979.
12. Lefebvre, A. H., “Atomization and Sprays,” Hemisphere Publishing
Corporation, New York, 1989.
13. H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker
Hannifin Report No.8, pp.61-92, 1982.
14. 許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
15. 高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003.
16. 蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989.
17. 楊坤和, “研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992.
18. 賴維祥, “噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博
士論文, 1995.
19. 徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995.
20. 趙金容,“相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究”, 國立成功大學碩士論
文, 1988.
21. A. A. Rizkalla and A. H. Lefebvre, “Influence of Liquid Properties on
Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April
1975.
22. A. A. Rizkalla and A. H. Lefebvre, “The Influence of Air and Liquid
Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320,
1975.
23. N. K. Rizk and A. H. Lefebvre, “Influence of Atomizer Design Feature on Mean
Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
24. J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions
of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
25. J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration
by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170,
1991.
26. J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low
Air Velocity,” J. Propulsion, Vol.7, No.2, March-April 1991.
27. M. Aligner and S. Witting, “Swirl and Counterswirl Effects in Prefilming
Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710,
1980.
28. T. Sattlemayer and S. Witting, “Internal Flow Effects in Prefilming Airblast
Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of
Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
29. C. Press, A. K. Gupta and H. G. Semerjian, “Aerodynamic Effects on Fuel
Spray Characteristics: Air-assist Atomizer,” HTD, Vol.104, pp.111-119, 1988.
30. J. D. Whitlow and A. H. Lefebvre, “Effervescent Atomizer Operation and Spray
Characteristics,” Atomization and Spray, Vol.3, pp.137-155, 1993.
31. 王承光, “氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,” 國立成功大學碩
士論文, 1996.
32. S. K. Chen and A. H. Lefebvre, “Spray Cone Angles of Effervescent Atomizers,
” Atomization and Spray, Vol.4, pp.291-301, 1994.
33. S. D. Sovani, P. E. Sojka and A. H. Lefebvre, “Effervescent Atomization ,”
Progress in Energy and Combustion Science, 1999.
34. B. Leroux, O. Delabroy and F. Lacas, “Influence of Superpulsating Mode on
Atomization Properties in Coaxial Air-assisted Atomizers,” Eighth
International Conference on Liquid Atomization and Spray Systems, July 2000.
35. A. Kufferath , B. Wende, W. Leuckel, “Influence of liquid flow condition
onspray characteristics of internal-mixing twin-fluid atomizers,”
International Journal of Heat and Fluid Flow 20 (2000)513-519.
36. Lie-Jin Guo et al., ”Study on gas-liquid two-phase spraying characteristics
of nozzles for the humidification of smoke,” Experimental Thermal and Fluid
Science 26 (2002) 715-722.
37. 林彰廷, “多孔噴頭效應在氣助是噴嘴中之霧化特性研究,” 國立成功大學碩士論文,
2003.
38. Zhang, F. R., Wakabayashi, S. and Tokuoka, N., “The Spray Structure from
Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray
of Swirl Atomizers),” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of
the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp.
675-680, 1994.
39. Jones, A. R., “Design Optimization of a Large Pressure-Jet Atomizer for
Power Plant,” Proceedings of the 2nd International Conference on Liquid
Atomization and Sprays, Madison, Wis., pp. 181-185, 1982.
40. Kenndy, J. B., “High Weber Number SMD Correlations for Pressure Atomizers,”
Transactions of ASME Journal of Engineering for Gas Turbines and Power,
Vol.108, pp.191-195, 1986.
41. Chin, J. S., Nickolaus, D and Lefebvre, A. H., “Influence of Distance on the
Spray Characteristics of Pressure-Swirl Atomizers,” ASME, Journal of
Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
42. De Corso, S. M., “Effect of Ambient and Fuel Pressure on Spray Drop Size,”
ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
43. De Corso, S. M, and Kemeny, G. A., “Effect of Ambient and Fuel Pressure on
Nozzle Spray Angle,” ASME, Journal of Engineering for Power, Vol. 79, No. 3,
pp.607-615, 1957.
44. Ortman, J. and Lefebvre, A. H., “Fuel Distributions from Pressure Swirl
Atomizers,” Journal of Propulsion and Power, Vol. 1, No. 1, pp. 11~15, 1985.
45. Elkotb, M. M., Rafat, N. M., and Hanna, M. A., “The Influence of Swirl
Atomizer Geometry on the Atomization Performance,” Proceedings of the 1st
International Conference on Liquid Atomization and Spray System, Tokyo, 1978,
pp. 109-115.
46. Chen, S. K., Lefebvre, A. H., and Rollbuhler, J., “Factors Influencing the
Effective Spray Cone Angle of Pressure Swirl Atomizers,” ASME, Journal of
Engineering for Gas Turbines and Power, Vol. 114, pp.97~103, 1992.
47. Suyari, M. and Lefebvre, A. H., “Film Thickness Mesaurements in A Simplex
Swirl Atomizer,” Journal of Propulsion and Power, Vol.2, No.6, pp. 528~533,
1986.
48. 洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文,
1991.
49. 郭振展, “渦旋作用在哈特曼共振腔中之霧化效應,” 大專學生參與專題研究計劃研究
成果報告, NSC 89-2815-C-006-140-R-E, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔