(3.235.41.241) 您好!臺灣時間:2021/04/15 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佑慈
研究生(外文):Yu-Tzu Chen
論文名稱:微尺度H型管道擴散分離系統之研發
論文名稱(外文):A Study of Separation by Diffusion in a Micro-channel System
指導教授:李定智
指導教授(外文):D. Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:H型微流道晶片螢光檢測乳膠微粒擴散分離
外文關鍵詞:filterdiffusionfluorescencepolystyrene beads
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
  現今在生物晶片的研究上,對於生物微粒的分離仍是一項極具挑戰性的問題。如何有效分離純化出某一種細胞群,並考慮到分離的過程不會造成細胞任何性質的改變與細胞本體的破壞,目前並沒有一種最可靠最有效率的方法。故本研究以微機電製程技術製作H型微流道晶片,主要利用擴散作為分離機制,H型形狀的設計乃為了方便緩衝液與樣本液於兩端入口注入後於中間的管道匯合作用,並讓分離成功與未分離的溶液分別由兩端出口流出蒐集。而利用此種純粹以粒子擴散性大小不同而分離的方法不會像利用電場等外力分離方法產生如樣本破壞等問題,也不需複雜的製作程序,雖然擴散所需的分離時間較長,但利用管道的最佳化設計,實際上實驗的時間也僅需數秒至數分鐘即可完成,具有高效能、應用範圍高等優點。
  本研究經多項實驗架設系統問題探討改善後,分別針對不同的晶片設計(如角度、隔板、尺寸等)對擴散效能產生的影響進行實驗與探討。實驗結果顯示已可成功的利用x-z垂直式H型晶片(長:35 mm、寬:2 mm、高:100 μm)以0.5 μl/min流量將混合0.1、2 μm乳膠微粒(latex)的水溶液中分離出0.1 μm的乳膠微粒。在實驗過程中利用syringe pump以0.5 μl/min流量同時驅動樣本溶液(0.1、2 μm latex)與緩衝溶液(PBS buffer)分別注入H型晶片的兩端入口中,當兩者流入選取管道時,因流量控制樣本在管道停留時間為840 s,使0.1 μm的乳膠微粒擴散約85 μm的距離而遠大於2 μm latex擴散的19 μm距離因此流入對角處的產物管道而分離,並利用螢光檢測證實分離效能。
  It has recently become possible to fabricate intricate fluid handling systems with channel sizes down to sub-micron using microfabrication techniques. The fluid dynamics in this regime is very different from the macro-scale, such as viscous forces dominate over inertial forces, surface tension can be a powerful force, diffusion becomes the basic method for mixing, etc. In this study, we provide a diffusion-based filter, which can be used for polystyrene beads separation that has the advantage of high purity, quickness, effectiveness, and can be applied to complex microbes separation in the future.
  We designed and fabricated various H-type diffusion-based chips. The sample stream was laminar flow and in contact with a buffer stream, the contact between the two streams was maintained for a sufficient period of time to allow particles with higher diffusivity to diffuse from the sample stream into the buffer stream, then we could collect the desired particles from the product outlet.
  In our system, we used the fluorescence signal intensity (RGB values) to identify the concentration of the particles, and found that the x-z perpendicular chip has better efficiency than the x-y planar chip. With the optimal conditions, we have successfully separated 0.1 μm latex from the mixed fluid (0.1 μm+2 μm latex).
目 錄
中文摘要…………………………………………………………… I
英文摘要……………………………………………………………II
誌謝……………………………………………………………… III
目錄…………………………………………………………………IV
圖目錄…………………………………………………………… VII
表目錄………………………………………………………………XI
符號說明.............................................XII

第一章 緒論
1.1 研究背景與目的……………………………………………… 1
1.2 生物晶片的發展……………………………………………… 3
1.2.1 檢測型晶片………………………………………………… 4
1.2.2 處理型晶片………………………………………………… 4
1.3 細胞分離技術………………………………………………… 7
1.3.1 離心法……………………………………………………… 7
1.3.2 電泳法……………………………………………………… 8
1.3.3 流式細胞分選儀…………………………………………… 9
1.3.4 其他分離法………………………………………………… 9
1.4 微流體晶片的偵測方法..............................11
1.4.1 螢光偵測法......................................11
1.4.2 電導度偵測法....................................12
1.5 文獻回顧………………………………………………………14
1.6 研究架構………………………………………………………17

第二章 原理與設計.....................................18
2.1 微尺度元件中流體力學特色..........................18
2.2 擴散分離原理......................................23
2.2.1 分子擴散理論....................................23
2.2.2 H型微流道擴散分離機制...........................25
2.3 晶片設計..........................................28

第三章 設備與方法.....................................30
3.1 實驗設備………………………………………………………30
3.2 分離晶片製作…………………………………………………32
3.2.1 母膜晶片的製作..................................32
3.2.2 PDMS通道晶片的製作..............................33
3.2.3 H型微流道分離晶片...............................35
3.3實驗系統架構………………………………………………… 36
3.3.1 擴散分離實驗平台…………………………………………36
3.3.2 定性分析系統架構…………………………………………36
3.4 實驗方法..........................................38
3.4.1 溶液及單相微粒之擴散效應........................38
3.4.2 多相微粒分離操控................................39

第四章 結果與結論.....................................41
4.1 系統架設之研討................................... 41
4.1.1 最佳化設計之探討................................41
4.1.2 微管道界面現象之探討............................42
4.1.3 影像處理分析之探討..............................44
4.2 擴散效應之研討....................................46
4.2.1 溶液擴散實驗…..................................46
4.2.2 微粒擴散實驗....................................47
4.2.3 微粒於不同型式H型晶片之擴散實驗.................48
4.3 混合微粒擴散分離實驗結果..........................50

第五章 結論...........................................52
5.1 總結……………………………………………………………52
5.2 未來展望………………………………………………………54

參考文獻……………………………………………………………55
自述…………………………………………………………………98
1. A. Radbruch, ”Flow cytometry and cell sorting”, Springer-Verlag Inc., 7-11 (1992).
2. T. S. Paul, “Methods of cell separation”, Elsevier, 23-26 (1988).
3. M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator”, Electrophoresis, 22, 383-3892 (2001).
4. K. Asami, E. Gheorghiu, T. Yonezawa, “Dielectric behavior of budding yeast in cell separaion”, Biochimica et Biophysica Acta, 1381, 234-239 (1998).
5. P. R. C. Gascoyne, X. B. Wang, Y. Huang, F. F. Becker, “Dielectrophoretic separation of cancer cells from blood”, IEEE Transactions on Industry Applications, 33, 670-678 (1997).
6. C. S. Effenhauser, A. Manz A., H. M. Widmer, “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights”, Analytical Chemistry, 65, 2637-2642 (1993).
7. A. T. Woolley, K. Q. Lao, A. N. Glazer, R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection”, Analytical Chemistry, 70, 684-688 (1998).
8. J. P. Brody, P. Yager, “Diffusion-based extraction in a microfabricated device”, Sensors and Actuators A, 58, 13-18 (1997).
9. L.W. van H. Nicole, V. Oscar, M. M. L. van H. Adele, J. K. Esther, P. Ad, A. Aharoni, J. van T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis”, Journal of Biotechnology, 78, 271–280 (2000).
10. F. Vinet , P. Chaton, Y. Fouillet, “Microarrays and microfluidic devices: miniaturized systems for biological analysis”, Microelectronic Engineering, 61–62, 41–47 (2002).
11. D. Beebe, M. Wheeler, H. Zeringue, E. Walters, S. Raty, “Microfluidic technology for assisted reproduction”, Theriogenology, 57, 125-135 (2002).
12. M. S. Talary, J. P. H. Burt, P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, S191-S203 (1998).
13. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, “An integrated nanoliter DNA analysis device”, Science, 282(16), 484~487 (1998).
14. A. Tiselius, “A new apparatus for electrophoretic analysis of colloidal mixture”, Transactions of the Faraday Society, 33, 524 (1937).
15. S. F. Y. Li, “Capillary electrophoresis: principles, practice and applications”, Elsevier, (1993).
16. http://www.bdtwn.com.tw/bdb/index.htm
17. http://www.cnfoodtech.com/nm/4.htm
18. Z. H. Liang, N. Chiem, Ocvirk G., “Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices”, Analytical Chemistry, 68(6), 1040-1046 (1996).
19. P. C. H. Li, D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects”, Analytical Chemistry, 69(8), 1564-1568 (1997).
20. D. M. Pinto, Y. B. Ning, D.Figeys, “An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification”, Electrophoresis, 21, 181-190 (2000).
21. P. A. Walker, M. D. Morris, “Isotachophoretic separations on a microchip normal raman spectroscopy detection”, Analytical Chemistry, 70(18), 3766-3769 (1998).
22. S. R. Wallenborg, C. G. Bailey, “Separation and detection of explosives on microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence”, Analytical Chemistry, 72, 1872-1878 (2000).
23. A. E. Kamholz, B. H. Weigl, B. A. Finlayson, P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor”, Analytical Chemistry, 71, 5340-5347 (1999).
24. R. M. Guijt, E. Baltussen, G. van der Steen, et al.,”New approach for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection”, Electrophoresis, 22, 235-241 (2001).
25. J. Wang, B. M. Tian, E. Sahlin, “Integrated electrophoresis chips/ amperometric detection with sputtered gold working electrodes”, Analytical Chemistry, 71, 3901-3904 (1999).
26. 馬立人、蔣中華, “生物晶片”, 化學工業出版社, 2002年.
27. J. P. Brody, T. D. Osborn, F. K. Forster, P. Yager, “A planar microfabricated fluid filter”, Sensors and Actuators A (Physical), A54 , 704-708 (1996).
28. M. R. Holl, P. Galambos, F. K. Forster, J. P. Brody, P. Yager, “Optimal design of a microfabricated diffusion-based extraction device”, Proceedings of 1996 ASME Meeting ASME DSC59, 189-195 (1996).
29. J. P. Brody, P. Yager, “Low Reynolds number micro-fluidic devices”, Proceedings Hilton Head MEMS conference, Solid-State Sensor and Actuator Workshop, 105-108 (1996).
30. J. P. Brody, P. Yager, R. E. Goldstein, R. H. Austin, “Biotechnology at low Reynolds numbers”, Biophysical Journal, 71 (6), 3430-3441 (1996).
31. B. H. Weigl, M. R. Holl, D. Schutte, J. P. Brody, P. Yager, “Diffusion-based optical chemical detection in silicon flow structures”, Analytical Methods & Instrumentation, Proceedings of µTAS '96, 174-184 (1996).
32. B. H. Weigl, P. Yager, “Silicon-microfabricated diffusion-based optical chemical sensor”, (Conference Proceedings Europtrode III, 1996) Sensors and Actuators B (Chemical), B39 (1-3), 452-457 (1997).
33. J. P. Brody, A. E. Kamholz, P. Yager, “Prominent microscopic effects in microfabricated fluid analysis systems”, SPIE Proceedings, Micro- and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications, 2978, 103-110 (1997).
34. B. H. Weigl, P. Yager, “Microfluidic diffusion-based separation and detection”, Science, 283(5400), 346-347 (1999).
35. B. H. Weigl, J. Kriebel, K. J. Mayes, T. Bui, P. Yager, “Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors)”, Mikrochimica Acta, 131, 75-83 (1999).
36. A. E. Kamholz, P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels”, Biophysical Journal, 80, 155-160 (2001).
37. A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, P. Yager, “A rapid diffusion immunoassay in a T-Sensor”, Nature Biotechnology, 19(5), 461- 465 (2001).
38. A. E. Kamholz, E. A. Schilling, P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel”, Biophysical Journal, 80(4), 1967-1972 (2001).
39. A. E. Kamholz, P. Yager, “Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations”, Sensors and Actuators B, 82(1), 117-121 (2002).
40. A. Hatch, P. Yager, “Diffusion immunoassay in polyacrylamide hydrogels”, Micro Total Analysis Systems 2001, J. M. Ramsay & A. van den Berg, Kluwer Academic Publishers, Dordrecht, 571-572 (2001).
41. K. R. Hawkins, A. Hatch, H. Chang, P. Yager, “Diffusion immunoassay for protein analytes”, Proceedings of Microtechnologies in Medicine and Biology, Madison, WI, IEEE Press, 535-540 (2002).
42. P. Yager, “Transverse diffusion in microfluidic systems”, Lab-on-a-chip: Chemistry in Miniaturized Synthesis and Analysis Systems, (2003).
43. B. H. Weigl, “Lab-on-a-chip-based separation and detection technology for life science applications”, American Biotechnology Laboratory, 20:1, 28-30.
44. P. S. Williams, et al, “Continuous SPLITT Fractionation Based on a Diffusion Mechanism”, Industrial & Engineering Chemistry Research, 31, 2172-2181 (1992).
45. S. Levin, G. Tawil, “Analytical SPLITT Fractionation in the Diffusion Mode Operating as a Dialysis-like System Devoid of Membrane. Application to Drug-Carrying Liposomes”, Analytical Chemistry, 65, 2254-2261 (1993).
46. S. Levin, J.C. Giddings, "Continuous Separation of Particles from Macromolecules in Split-Flow Thin (SPLITT) Cells", Journal of Chemical Technology and Biotechnology, 50, 43-56 (1991).
47. J. C. Giddings, "Field-Flow Fractionation: Separation and Characterization of Macromolecular-Colloidal-Particulate Materials", Science, 260, 1456-1465 (1993).
48. K. B. Greiner, M. Deshpande, G. M. Whitesides, “Design analysis and 3D measurement of diffusive broadening in a Y-mixer”, Technical Proceedings of Micro Total Analysis Systems, Enschede, The Netherlands, MicroTAS 2000, 87-90.
49. M. Cabodi, Y. Chen, S. W. P. Turner, H. G. Craighead, R. H. Austin, “Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection”, Electrophoresis, 23, 3496-3503 (2002).
50. R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, H. A. Stone, G. M. Whitesides, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels”, Physical Review Letters.
51. T. Fujii, “PDMS-based microfluidic devices for biomedical applications”, Microelectronic Engineering, 61-62, 907-914 (2002).
52. B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-Dimensional Micro-channel Fabrication in Polydimethylsiloxane(PDMS) Elastomer”, Journal of Microelectromechanical Systems, 9, 76-81 (2000).
53. Gad-el-Hak, "The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture", Journal of Fluids Engineering, Vol. 121 (1999).
54. H. C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219 (1977).
55. Steve Wereley, ”Nano-Bio-Micro fluids tutorial”, Nanotech 2004.
56. O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London A, 174-935 (1883).
57. X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannel”, Experimental Heat transfer, 7, 249-264 (1994).
58. P. Wu, W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277 (1983).
59. S. Levin, J. C. Giddings, “Rapid diffusion coefficient measurements using analytical SPLITT fractionation:application to proteins”, Analytical Biochemistry, 208, 80-87 (1993).
60. B. H. Weigl, “Microfluidics-based lab-on-a-chip systems”, (2000).
61. CRC Handbook of chemistry and physics , CRC Press.
62. Reist、鄭福田、劉希平, “微粒導論”, 國立編譯館, 2001年.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔