(100.25.42.117) 您好!臺灣時間:2021/04/21 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊俊德
研究生(外文):Chun-Te Chuang
論文名稱:針孔成像系統三維量測之誤差分析及系統校正
論文名稱(外文):Error Analysis and System Calibration of the Pin-hole Vision System for Three Dimensional Measurement
指導教授:陳介力陳介力引用關係
指導教授(外文):Chieh-Li Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:三維量測攝影機校正影像處理電腦視覺
外文關鍵詞:camera calibrationthree-dimensional measurementcomputer visionimage processing
相關次數:
  • 被引用被引用:22
  • 點閱點閱:501
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:135
  • 收藏至我的研究室書目清單書目收藏:2
  近年來,由於數位影像的蓬勃發展,其應用也逐漸溶入人類的生活當中。然而相較於資訊業者致力於影像的編碼及其它影像資料處理技術,控制領域的人則希望能將影像當作是一種感測器,也就是從影像中取出所需要的訊息來當作回饋訊號。所以若能利用影像來知道物體的三維空間座標,就可以對物體位置與姿態進行量測,進而能發展出一套全新的非接觸式量測系統。
  利用二維的影像來重建三維的空間是進行攝影機校正的主要目的,然而利用二維校正板或三維校正盒都有一個缺點,就是雙眼攝影機系統所建立的三維空間座標只有在校正板平面附近最為準確,離校正板愈遠則其誤差就愈大。因此便限制了立體視覺在三維空間量測的應用性。
  本研究將使用「合成的立體校正模型」來進行攝影機校正。此校正模型是由一張單一平面的校正板藉由位移所構成的。其不僅能提供正確的校正點三維資訊,而且沒有傳統立體校正模型的視角障礙,更重要的是校正板製作只須要用一般印表機列印即可,不但便宜效果更佳。其次,因為此校正模型的校正點為圓的中心,所以此校正模型也適合進行長距離校正。
  目前尚無研究影像量測精確度的相關文獻,但是影像量測誤差的確是存在而缺乏討論的,所以本研究藉著誤差分析來找出影像量測系統的較適配置,以降低影像量測誤差。本研究主要分為兩個部分:第一部分是使用「合成的立體校正模型」來進行攝影機校正,再配合平面校正技術並加以改善,以求得最佳的攝影機模型參數;另一部分是透過誤差分析,找出影像量測系統的較適配置以改善影像量測精確度。經由這兩個部分的結合所架構出的半自動非接觸式量測系統,可以使整個工作區域內的影像量測誤差降為使用傳統校正板時的五分之一,對電腦視覺量測應用極具理論擴展與實用價值。
  In recent years, the applications of digital images have been developed and utilized in human daily life. The information industry is devoted to the image coding or filtering technology. However, for the people of control research, the image is considered as a sensor to provide required information for feedback control purposes. For example, if the world coordinate of an object can be obtained from image data, the location or the attitude of the object can be measured, and a non-contact measurement system can be constructed.
  The purpose of camera calibration is to reconstruct the world coordinate using two-dimension images. However, there is a drawback in most of camera calibration techniques which use a single two-dimension calibration board or three dimension calibration box. In those studies, the longer the distance between the board and the object to be measured, the worse the measurement error. Therefore, the use of stereo image for three-dimension measurement is limited.
  This paper proposes a synthetic stereo calibration model for camera calibration which is obtained by a series of parallel motion of a single calibration board. This model provides the exact three-dimension information of the calibration points without any viewpoint obstacles. On the other hand, the calibration patterns are replaced by circles array, so that the model is also suitable for calibration within a range of distance.
  There is no relative research addressing the measurement error analysis and its improvement for visual-measurement system in the literature. Therefore, the main purpose of this dissertation is to investigate a suitable set-up for the measurement system such that the measurement error is reduced. This paper is composed of two parts. One is to determine the exact camera model parameters using the proposed synthetic stereo calibration model and the improvement of technique using two-dimension calibration board. The other is to investigate a suitable set-up for the measurement system using stereo vision. The proposed semi-automatic non-contact three-dimension measurement system can reduce the measurement error up to one-fifth of that using conventional calibration board. The results are beneficial to the development and application of measurement system using computer vision.
目錄
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文架構 3

第二章 數位影像處理 4
2.1 數位影像處理系統簡介 4
2.2 數位影像之取樣與量化 5
2.3 基本數位影像處理 7
2.3.1 影像初級處理 7
2.3.2 影像中初處理 7
2.3.3 影像處理實作 8

第三章 電腦視覺及攝影機校正 9
3.1 攝影機模型 9
3.1.1 透視投影幾何 9
3.1.2 平面投影轉換 13
3.2 Zhang的校正技術 16
3.2.1 符號定義 16
3.2.2 校正模型與其影像之平面投影 16
3.2.3 內部參數的條件限制式 17
3.2.4 求解攝影機參數 17
3.2.5 求出內部參數矩陣A 18
3.2.6 求出外部參數R與t 19
3.2.7 最佳可能解 19
3.2.8 徑向透鏡扭曲 20
3.2.9 求解徑向扭曲參數 21
3.2.10 求解全部的最佳參數 22
3.3 立體校正模型的方法 22
3.3.1 合成立體校正模型 22
3.3.2 使用新合成立體校正模型的困難 23
3.3.3 解決的方法 24
3.3.4 攝影機校正實作步驟 27
3.3.5 攝影機校正結果 28
3.4 頭眼機構幾何 31
3.4.1 頭眼機構座標轉換分析 32
3.4.2 頭眼機構未知參數識別 35
3.4.3 動態攝影機即時模型建構 38
3.5 Epipolar Geometry與基礎矩陣 39
3.5.1 Epipolar Geometry 39
3.5.2 基礎矩陣(Fundamental matrix) 40
3.6 重建世界座標 45

第四章 影像量測精確度探討 47
4.1 影像量測精確度 47
4.2 影像量測誤差分析 49
4.2.1 「合成立體校正模型」的平行參數 49
4.2.2 攝影機鏡頭對焦平面 51
4.2.3 校正模型放置的位置 52
4.2.4 構成「合成立體校正模型」的平面數 53
4.2.5 基線長度的選擇 56
4.2.6 人為選點的影響 58
4.3 影像量測系統的較適配置 60
4.4半自動非接觸式量測系統的建立與測試 64

第五章 結論與建議 65

參考文獻 66
附錄A 68
附錄B 69
自述 70
Bougnoux, S. (1998). From projective to Euclidean space under any practical situation, a criticism of self-calibration. In Proceedings of the 6th International Conference on Computer Vision, 790-796.
Faugeras, O. (1993). Three-Dimensional Computer Vision: a Geometric Viewpoint. MIT Press.
Frahm, J. M. and Koch, R. (2003). Camera calibration with known rotation. Proceedings of the Ninth IEEE International Conference on Computer Vision, 1418-1425.
Gonzalez, R. C., and Woods, R. E. (2002). Digital image processing. New Jersey:Prentice Hall.
Huang, Z., and Boufama, B. (2002). A semi-automatic camera calibration method for augmented reality. 2002 IEEE International Conference on Systems, Man and Cybernetics, Volume: 4 , 6-9 Oct. 2002 Pages:6 pp. vol.4, TP1H6.
Klette, R. (1998). Computer vision three-dimensional data form images. Singapore: Springer.
Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligent, 16(9), 920-932.
Li, F. Brady, M. and Wiles, C. (1996). Fast computation of the fundamental matrix for an active stereo vision system. In Proceeding of ICCV’96 International Conference on Computer Vision, 157-166.
Malis, E. (2004). Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Transaction on Robotics and Automation, 20(1), 72-81.
Matlab Help. Optimization Toolbox: Standard Algorithms: Levenberg-Marquardt Method.
Nakano, K. Okutomi, M. and Kasegawa, Y. (2002). Camera calibration with precise extraction of feature points using projective transformation. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2532-2538.
Sturm, P. (2002). Critical motion sequences for the self-calibration cameras and stereo systems with variable focal length. Image Vis. Comput, vol. 20, no. 5-6, 415-426
Sonka, M., Hlavac, V., and Boyle, R. (1998). Image processing, analysis, and machine vision. California: PWS.
Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation. 3(4), 323-344.
Wei, G., and Ma, S. (1994). Implicit and explicit camera calibration: Theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5), 469-480.
Zhang, Z. (1999). A flexible new technique for camera calibration. Technical Report MSR-TR-98-71, Microsoft Research.
Zhang, Z. (2002). Camera calibration with one-dimensional objects. Technical Report MSR-TR-2001-120, Microsoft Research.
吳承柯,戴善榮,程湘君,雲立實,(1993),數位影像處理,台灣:儒林
何宜達, (2002), 視覺伺服技術於三維目標軌跡預測與攔截之應用. 碩士論文. 國立成功大學航空太空科學研究所.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔