(3.234.221.162) 您好!臺灣時間:2021/04/14 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張碩毅
研究生(外文):Shuo-Yi Chang
論文名稱:紊流場中單一油滴氣化正準理論分析
論文名稱(外文):Canonical Analysis of Single Droplet Gasification in Turbulent Environment
指導教授:邱輝煌邱輝煌引用關係
指導教授(外文):Huei-Huang Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:88
中文關鍵詞:油滴氣化正準理論紊流場蒸發
外文關鍵詞:turbulentvaporizationgasificationdropletcanonical theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
  油滴(droplet)蒸發是噴霧燃燒(combustion)中最基礎且重要的一環。而油滴蒸發率為液態油滴完全轉換成蒸汽,與空氣反應燃燒之關鍵。
本研究以邱輝煌教授的正準理論分析(canonical theory)導出油滴蒸發的正準油滴蒸發定律,與正準熱傳定律。本研究將上述公式用來分析數值模擬所得之結果,分項探討物理機制之貢獻度。數值計算部份採用CFX熱流分析軟體,模擬單一油滴在流場之熱值傳現象,再利用CFX 副程式USER FORTRAN 建立正準油滴公式之程式。根據不同條件下得到之流場數據、阻力係數,以驗證流場之正確性;接下來利用正準熱傳定律,計算流場中Nusselt number 值的大小,並進一步與實驗結果做比較。利用正準油滴公式分析發現,熱傳導項之熱傳率隨雷諾數增大而稍微減少,性質變化的熱傳率則幾乎不變。主要由熱對流項的熱傳率增加,導致Nusselt number 隨雷諾數上升而增加。根據正準熱傳定律的分析,將可以應用於類似的正準油滴蒸發定律中。
  The gasification of a droplet is fundamental and important research in modern spray combustion. The critical point of the combustion activity of an entirely vaporized liquid droplet is the rate of its vaporization. This study,according to canonical integration method by Chiu, developed the canonical theory of droplet, analyzes the result of numerical simulation and discusses the contribution of physical mechanism. CFX is used to deal with numerical calculation to simulate the heat transfer phenomenon of a single droplet in flow field and its subroutine, User Fortran, is then used to set up the programs of canonical theory of droplet. The flow field data and the drag coefficient obtained under different conditions verifies accuracy of flow field. Then calculate the value of Nusselt number by canonical heat transfer theory and compare it with the result of the experiment furthermore. According to canonical theory of droplet, the rate of heat transfer in heat conduction decreases slightly by increase of Reynolds number, but change of its property remains almost constant. Increase of the rate of heat transfer in heat convection causes Nusselt number increasing with increase of Reynolds number. Canonical heat transfer theory is predicted to be applied to studies
similar to canonical theory of droplet.
第一章 導論............................................. 1。
1-1 序論.................................................. 1。
1-2 文獻回顧.............................................. 2。
I.實驗結果................................................ 2。
II.數值模擬............................................... 5。
III.理論分析.............................................. 6。
1-3 研究動機.............................................. 8。
第二章 正準油滴定律....................................... 9。
2-1 油滴模型簡介.......................................... 9。
2-2 正準積分理論.......................................... 9。
2-3 假設條件.............................................. 10。
2-4 統御方程式........................................... 11。
I.氣相方程式: ........................................... 11。
II.液相方程式............................................ 12。
2-5 邊界條件............................................. 13。
2-6 正準油滴氣化公式...................................... 16。
(一)外流場氣化機制....................................... 17。
(1)徑向熱傳導M1 .......................................... 17。
(2)流場性質變化以及熱輻射效應M2 .......................... 17。
(3)熱對流傳輸M3 .......................................... 17。
(4)熱能的時間變化項M4 與壓力變化效應M5 ................... 18。
(5)化學反應M6 ............................................ 18。
(6) 方向熱傳導效應M7,M8 .................................. 18。
(二)內流場氣化機制....................................... 19。
(三)介面傳輸因子......................................... 20。
2-5 熱傳量以及NUSSELT NUMBER 計算: ....................... 20。
2-6 油滴阻力............................................. 23。
2-7 氣體之熱物理性質....................................24。
第三章 數值方法.......................................... 25。
3-1 簡介.................................................. 25。
3-2 CFX 程式簡介.......................................... 25。
功能與內容概述........................................... 26。
3-3 CFX 建立物理模型與設定條件............................ 27。
佈點方式: ............................................... 28。
3-4 CFX 格點結構(STRUCTURE OF GRID) ....................... 28。
3-5 求解矩陣方程式(MATRIX EQUATION SOLVED)................ 29。
3-6 SIMPLEC 求解步驟..................................... 30。
計算步驟: ............................................... 30。
第四章 結果與討論........................................ 32。
4-1. 流場測試............................................ 32。
4-2.NUSSELT NUMBER 計算................................... 34。
結論: .................................................... 37。
第五章 未來工作.......................................... 38。
參考文獻................................................. 39。
附錄A : .................................................. 42。
A1.統御方程式(GOVERNING EQUATIONS): .................... 42。
A-1-1 連續方程式(CONTINUITY EQUATION): .................... 42。
A-1-2 動量方程式(MOMENTUM EQUATION): .................... 42。
A-1-3 能量方程式(ENERGY EQUATION): ..................... 43。
A-1-4 狀態方程式(EQUATION OF STATE): ................... 43。
A-1-5 動量傳輸(MOMENTUM TRANSFER): ...................... 44。
A-1-6 熱傳 (HEAT TRANSFER): .............................. 44。
A-1-7 質傳 (MASS TRANSFER): .............................. 45。
A-1-8 紊流模式(TURBULENCE MODEL): ........................ 46。
I. K-E 紊流模式(THE K-E MODEL) ............................ 49。
II.低雷諾數K-E 模式(THE LOW REYNOLDS NUMBER K-E MODEL).... 50。
A-1-9 介面阻力(INTER-PHASE DRAG): ........................ 52。
附表..................................................... 54。
附圖..................................................... 55。
1. Gokalp,I., Chauveau, C., Simon, O., and Chesneau, X.,” Mass transfer
form Liquid Fuel Droplets in Turbulent Flow” , Combustion and Flame,
Vol.89, pp.289-298,1992.
2. Chiu ,H.H. ,”Canonical Integeration Method and Its Application in Droplet
and Spray Combustion” ,Lecture Note of CIM : Institute of Aeronautics
and Astronautics, National Cheng Kung University, 1991.
3. 劉穎儒,"紊流強度及尺度對燃料液滴蒸發之影響 “,國立台灣大學
應用力學研究所碩士論文,2000.
4. Hiromistu, N., and Kawaguchi, O, ”Influence of Flow Turbulence on the
Evaporation Rate of a Suspended Droplet in a Hot Air Flow”, Heat
Transfer –Japanese Research , Vol. , 24, No. 8, pp.689-700,1997
5. Eckartsberg, A.V.and Kapat,J.S., “Effect of Flow Turbulence on
Evaporation Rate of a Single Droplet”, 38th Aerospace Sciences Meeting &
Exhibit ,University of Central Florida Orlando, FL, 2000.
6. H.H. Chiu and L.H Hu, “Theory of State Transition of an Isolation
Droplet ”proc.35th Japan Symposium on Combustion,pp.295-395,1997
7. 胡禮和,"液滴之動力與熱力變化及氣化分率之研究",國立成功大
學航空太空工程研究所博士論文,2000 年
8. 許家銘,"正準油滴理論-演變、結構與複雜性"國立成功大學航空太
空研究所碩士論文,2000.
9. Chiu,H.H. ,”Advanced Challenges in Droplets and Spray Combustion.”
Proc. 2nd Asia-Pacific Conf. on Combustion ASPACC-2,pp54-73,1999.
40
10. W.S. Chen, “Interface Exchange Phenomenon of a Convective Liquid
Droplet ( Canonical Droplet Theory )” Ph.D, thesis, Institute of
Aeronautics and Astronautics, National Cheng Kung University,1993.
11. B.E. Launder, B.I.Sharma, “Application of the energy dissipation
model of turbulence to the calculation of flow near a spinning disc ”,
Letters in Heat and Mass Transfer, Vol.1, pp.131-138, 1974.
12. B.E. Launder, D.B. Spalding, “The numerical computation of
turbulent flow”, Computer Methods in Applied Mechanics and
Engineering, Vol.13, pp.269-289, 1974.
13. Dennies, S.C.R. and Walker, J,D.A., ”Calculation of the Steady Flow Past
a Sphere at Low and Moderate Reynolds Numbers ”, J. Fluid
Mech.,Vol.48,Part 4,pp.771-789,1971.
14. Rimon, Y. and Cheng, S.I, ”Numerical Solution of a Uniform Flow over a
Sphere at Intermediate Reynolds Numbers” ,Physics of Fluids,Vol.12,
No.5,pp.949-959,May 1969.
15. Prakash, S. and Sirignano , W.A., “ Liquid Fuel Droplet Heating with
Internal Circulation” Int. J. Heat Mass Transfer,Vol.21, pp.885-895 , 1978
16. Prakash, S. and Sirignano , W.A., “Theory of Convective Droplet
Vaporization with Unsteady Heat Transfer in the Circulating Liquid
Phase” Int. J. Heat Mass Transfer, Vol.23. pp 253-268,1980.
17. Chiang C.H. Raju, M.S. and Sirignano, W.A., “Numerical Analysis of
Convection ,Vaporizing Fuel Droplet with Variable Properties .”
AIAA-89-0834 AIAA/ASME/ASE 27th Aerospace Science Meeting,1989
18. Suhas V. Pantankar ,” Numerical Heat Transfer and Fluid Flow ”,
Hemisphere Publishing Corporation , New York ,1983.
19. L. Schiller and A. Nauman (1933) , VDI Zeits ., 77 , p318
41
20. M. Ishii and N. Zuber (1979) , AIChEJ. 25(5) p843.
21. F. Ihme ,H. Schmidt-Traub, and H. Brauer (1972), Chemie-ing.-Tech.,
44(5) p306.
22. Whitaker, S. , AIChE J., 18 ,p 361, 1972.
23. Chiu, H.H., “Modern Development in Mechanics and Combustion of
Many Droplet systems,” Presented at IUTAM Symposium on Mechanics
and Combustion of Droplets and Sprays, National Cheng Kung
University, Dec. 6-10, 1994
24. Chiu, H.H. and Su. C.P., “States, Structure and Laws of Interacting
Droplets,”Atomization and Sprays, Vol. 7, pp.1-32,1997
25. Chiu, H.H. “Advance Challenges in Droplets and Spray Combustion,”
Proc. 2nd Asia-Pacific Conf. on Combustion ASPACC-2, PP.54-73,1999.
26. Chiu, H.H. and Tsai, H.L., “Laws of Interfacial Regression Hybrid
Propellant,” Proc. 2nd Asia-Pacific Conf. on Combustion ASPACC-2,
PP.243-246,1999.
27. Huang, J.S. “Canonical and Renormalized Theory of Droplet,” Ph. D.
Dissertation, IAA, NCKU, Taiwan, 1995.
28. 邱輝煌、吳杉寶、蔡欣倫,“ “ 中國航空太空學會/中華民用航空學
會學術研討會暨國科會航太學門研究成果發表會,2003 年
29. http://www.knovel.com/knovel2/Toc.jsp?BookID=49
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔