(100.26.179.251) 您好!臺灣時間:2021/04/14 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李愷倫
研究生(外文):Kai-Lun Lee
論文名稱:皮米衛星姿態判定與控制次系統之設計與測試
論文名稱(外文):Design and Test of the Attitude Determination and Control Subsystem for a Picosatellite
指導教授:林穎裕林穎裕引用關係
指導教授(外文):Yiing-Yuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:姿態判定姿態控制硬體迴路
外文關鍵詞:Attitude DeterminationAttitude ControlSimulinkxPC targetReal TimeHardware-in-the-loop
相關次數:
  • 被引用被引用:10
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
  本論文根據皮米衛星所設計的任務目標,即軌道高度600公里,傾角98度,三軸穩定控制且具備5度以內的地球指向精度的需求,姿態控制次系統選用三軸磁力主動控制結合動量偏斜姿態穩定的架構。在衛星脫離火箭搜尋階段,採用穩健的B-dot控制法則,搭配磁力計、磁力線圈等硬體,以有效的降低初始角速度。任務操作階段中的控制,則設計在衛星Y軸配置一動量飛輪來控制衛星俯仰的角度,以及提供X、Z軸穩定,再配合三軸的磁力線圈作指向控制及移除動量飛輪多餘的角動量,以達成三軸穩定及指向精度。姿態控制次系統設計的內容包含建立地球磁場、軌道運動、衛星動態、及環境干擾模型,選擇適當控制法則與控制器參數進行模擬。姿態判定方面使用磁力計、陀螺儀及太陽感測器,搭配擴張卡爾曼濾波理論,以完成姿態估測演算法的設計。最後為了驗證整個控制系統的可行性及飛行軟體的正確性,使用xPC Target工具建立一套即時動態模擬系統,配合姿態控制處理器進行硬體迴路測試。本文並包含幾個不同條件之案例,模擬結果顯示所設計之姿態控制次系統,能滿足任務需求。
  In this thesis, according to a pico-satellite design specification of 600 Km altitude, 98 degree inclination, 3-axis stabilization, and the requirement of 5 degree earth pointing accuracy, the attitude control subsystem is considered based on the method of 3-axis magnetic active control combined with momentum-biased stabilization. In the initial acquisition mode, de-tumbling is accomplished by using three orthogonal magnetic coils with robust B-dot control law. In the normal mode, a momentum wheel is used with its spin axis aligned along the satellite Y axis to control pitch motion and provide roll/yaw stabilization. Together, the magnetic coils are used to perform pointing control and momentum dumping to prevent the momentum wheel from saturation. For attitude determination, measurement sensors used include a 3-axis magnetometer, a gyroscope, and a coarse sun sensor. The Extend Kalman Filter is selected as the estimation algorithm. To test the correctness and to evaluate the reliability of the designed attitude control flight software, a simulation platform using the xPC toolbox with an attitude control 8051 micro-processor is established to perform real-time hardware-in-the-loop experiment. Several cases with different environmental conditions were tested and the simulation results are included which indicate that the control and determination algorithm is able to satisfy the attitude control requirement.
目 錄

中文摘要..............................................................i
英文摘要..............................................................ii
目錄..................................................................iii
圖目錄................................................................vi
表目錄................................................................x

第一章 緒論
1.1 研究動機.....................................................1
1.2 研究方法.....................................................2
1.3 文獻回顧.....................................................3
1.4 論文架構.....................................................3
第二章 座標系統與軌道
2.1 座標系統之定義...............................................5
2.1.1 地球固定座標.................................................5
2.1.2 地球慣性座標.................................................6
2.1.3 軌道座標.....................................................6
2.1.4 體座標.......................................................7
2.1.5 座標轉換.....................................................8
2.2 衛星軌道計算.................................................8
2.2.1 軌道六元素...................................................8
2.2.2 克卜勒方程式.................................................9
2.2.3 太陽同步軌道................................................12
第三章 PACE衛星之姿態控制
3.1 姿態控制次系統..............................................14
3.2 環境干擾力矩................................................15
3.2.1 重力梯度力矩................................................16
3.2.2 空氣動力矩..................................................17
3.2.3 磁性干擾力矩................................................18
3.3 動態方程式與運動式..........................................22
3.4 姿態控制法則................................................26
3.4.1 磁力矩控制..................................................26
3.4.2 搜尋模式控制法則則..........................................26
3.4.3 動量飛輪控制法則............................................28
3.4.4 動量卸除控制法則............................................30
3.4.5 指向控制法則................................................31
第四章 姿態判定設計
4.1 姿態估測方法介紹............................................33
4.2 擴張卡爾曼濾波理論..........................................34
4.3 姿態估測演算法的設計........................................39
4.4 姿態估測演算法的測試與討論..................................43
第五章 程式模擬與結果分析
5.1 系統參數估測................................................50
5.1.1 衛星質心與慣量估測..........................................50
5.1.2 控制器參數估測..............................................51
5.2 程式模擬流程................................................53
5.3 模擬結果與討論..............................................54
第六章 硬體迴路測試
6.1 MATLAB/Simulink xPC Target介紹.............................73
6.2 姿態控制處理器.............................................75
6.3 實驗設備...................................................77
6.4 測試結果與討論.............................................83
第七章 結論與未來展望
7.1 結論.......................................................88
7.2 未來展望...................................................89
參考文獻.............................................................90
附錄A 姿態判定與控制次系統硬體規格..............................93
[1] A. C. Stickler and K. T. Alfriend, “Elementary Magnetic Attitude Control System,” Journal of Spacecraft and Rockets, Vol. 13, No. 5, pp. 282-287, May 1976.
[2] P. Landiech, “Extensive Use of Magnetometers and Magnetotorquers for Small Satellites Attitude Estimation and Control,” Advances in the Astronautical Sciences, Guidance and Control, Vol. 88, pp. 137-156, 1995.
[3] A. Lin, C. L. Chang, S. Tsai, C. J. Fong, C. P. Chang, R. Lin, C. W. Liu, M. Yeh, M. H. Chung, H. P. Pan and C. H. Hwang, “YamSat: the First Picosatellite Being Developed in Taiwan,” Proc. 15th AIAA/USU Conference on Small Satellites, 13-16, 2001.
[4] C. J. Fong, A. Lin, A. Shie, M. Yeh, W. C. Chiou, M. H. Tsai, P.Y. Ho, C. W. Liu, M. S. Chang, H. P. Pan, S. Tsai and C. Hsiao, “Lessons Learned of NSPO’s Picosatellite Mission: YamSat – 1A, 1B, &1C,” Proc. 16th AIAA/USU Conference on Small Satellites, SSC02-X-6, 2002.
[5] J. Jung, N. Kuzuya, J. Alvarez, “The Design of the OPAL Attitude Control System,” 10th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan Utah, Sept. 16-19, 1996.
[6] T. Bak, R. Wisniewski and M. Blanke, “Autonomous Attitude Determination and Control System for the Ørsted Satellite,” Proceedings of the IEEE, Vol. 2, pp. 173-186, February 1996
[7] J. C. Juang and J. J. Miau, “Overview of the PACE Satellite: a Three-Axis Stabilized CubeSat,” 1th International CubeSat Symposium, 2003.
[8] Jan, Y. W., “Attitude Control for Spacecraft Initial Acquisition by Using Two Axis Magnetic Torquers,” 45th AASRC Conference, Taiwan, December, 2003.
[9] P. Wang, Y. B. Shtessel and Y. Q. Wang, “Satellite Attitude Control Using Only Magnetorquers,” American Control Conference, pp. 222 –226, June 1998.
[10] M. L. Psiaki, F. Martel and P. K. Pal, “Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data,” Journal of Guidance, Control and Dynamics, Vol. 23, No. 3, pp. 506-514, May-June 1990.
[11] W. H. Steyn, A Multi-mode Attitude Determination and Control System for Small Satellites, Ph. D. Dissertation, University of Stellenbosch, December 1995.
[12] R. Mehra, S. Seereeram, D. Bayard, F. Hadaegh, “Adaptive Kalman Filtering, Failure Detection and Identification for Space Attitude Estimation,” 4th IEEE Conference, Sept. 2002.
[13] B. S. Leonard, “NPSAT1 Magnetic Attitude Control System,” 16th AIAA Conference on Small Satellites, SSC02-V-7, 2002.
[14] F. Marteau, S. B. Gabriel and E. Rogers, “Attitude Determination and Control For Small Spacecraft,” UKACC International Conference on Control, Vol. 1, No. 427, pp. 620-625, September 1996.
[15] D. H. Chang, “Magnetic and Momentum bias attitude control design for the HETE small satellite,” Proceedings of the 6th Annual AIAA/USU Conference on Small Satellite, 1992.
[16] W. H. Steyn, Y. Hashida and V. Lappas, “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” 14th AIAA/USU Conference on Small Satellite, SSC00-VIII-8, 2002.
[17] M. Grassi, “Performance evaluation of the UNISAT attitude control system,” the Journal of the Astronautical Sciences, Vol.45, No.1, pp. 57–71, January-March, 1997.
[18] W. J. Larson, J. R. Wertz, Space mission analysis and design, Space Technology Library, 1991.
[19] J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
[20] P. C. Hughes, Spacecraft Attitude Dynamics, John Wiely & Sons, Inc., 1986.
[21] M. J. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
[22] 林辰宗, 張宏淵, “ROCSAT-3姿態控制系統穩定安全模式之Processor-in-the-loop系統,” 中國航太學會, 2003.
[23] 莊智清, 黃國興, 電子導航, 全華科技圖書股份有限公司, 2001.
[24] 鄧錦城, 8051 C語言寶典, 益眾資訊有限公司, 2003
[25] 李宜達, 動態模擬與繪圖使用MATLAB/SIMULINK, 全華科技圖書股份有限公司, 1998.
[26] 郭永麟, 人造衛星姿態控制次系統之地面硬體迴路模擬, 國立成功大學航空太空工程學系碩士論文, 1994.
[27] 林詠翔, 微衛星姿態控制次系統設計與模擬, 國立成功大學航空太空工程學系碩士論文,2000.
[28] 陳明豐, 低軌道衛星姿態估測演算法, 國立台灣大學電機工程學系碩士論文, 2002.
[29] 孫煜明, 微微衛星姿態控制次系統之設計與模擬, 國立成功大學電機工程學系碩士論文, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔