(18.204.2.190) 您好!臺灣時間:2021/04/19 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉宗亮
研究生(外文):Tsung-Liang Liu
論文名稱:無人飛行載具目標鎖定光學遙測系統之研發
論文名稱(外文):The Development of a Target-Lockup Optical Remote Sensing System for Unmanned Aerial Vehicle
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:63
中文關鍵詞:導航系統光學遙測系統無人飛行載具互補濾波
外文關鍵詞:Optical Remote Sensing SystemNavigation SystemComplementary FilteringUnmanned Aerial VehicleAttitude and Heading Reference System (AHRS)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,無人飛行載具無論在軍事、民用及商用上皆蓬勃發展,而低價體積小發展成熟的各式航電次系統組件,像是微處理器、微機電感測元件、小型全球定位系統接收機及無線數據機,更讓越來越多的大學等研究機構能跨進無人飛行載具的領域,並以此飛行平台做飛行控制、導航及影像處理等技術的研究發展。成功大學RMRL實驗室經過多年在無人飛行載具系統上的發展,目前已經進入視距外自主飛行的階段,而對一個成熟實用的無人飛行載具系統而言,利用自主飛行的能力完成特定任務亦是重要的一環。因此本研究的目標是在RMRL實驗室既有的UAV系統上建立一個空中光學遙測系統,以達成在自主飛行中不斷監視特定地面目標的任務。本研究主要包含攝影機轉動平台的開發、控制攝影機所需之飛機導航系統的開發以及配合監視任務之地面站開發,其中導航系統是關鍵,因為唯有掌握飛機確切的位置及姿態,才能利用機載電腦持續不斷控制攝影機指向地面站操作員指定之目標座標,並將影像傳回地面站。而導航系統中最大的難題是姿態量測,本研究利用市售之角速度壓電陀螺儀及包含傾斜儀之電子羅盤,以互補濾波的概念完成姿態量測。最後,整體系統已於實際飛行測試中驗證。
  Recently, Unmanned Aerial Vehicles (UAVs) have drawn more and more attention in various military, civil and commercial applications. More and more universities in particular in aerospace engineering have established their own UAV programs with the help of the developments in small and low-cost avionic components such as miniature-sized computers and MEMS sensors. The RMRL in IAA of NCKU, which has been devoted to the study of UAV system for years, is now undertaking the challenge of autonomously beyond-visual-range flight. To execute a specific mission in the autonomous flight, this thesis focus on the development of a target-lockup optical remote sensing system to be used on the UAV system for surveillance mission. To accomplish such a mission, some subsystems are developed including an active CCD-camera-gimbal subsystem to rotate the camera, a navigation subsystem for the control of the gimbal, and a ground control station to operate in coordination with the airborne system. In particular, the navigation subsystem is the key of this research because the camera can be continuously pointed to a ground target during the flight only if the position and attitude of the UAV are continuously measured. The task in building the navigation subsystem is the attitude measurement, and an attitude and heading reference system (AHRS) containing 3-axes gyroscopes and an electric compass has been developed through the idea of complementary filtering. Finally, the whole system has been proved in flight tests.
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII
LIST OF SYMBOLS X
1. INTRODUCTION 1
1.1. OPTICAL REMOTE SENSING ON UAVS 1
1.2. UAV PROJECT IN RMRL, IAA OF NCKU 4
1.3. MOTIVATION AND OBJECTIVE 5
1.4. LITERATURE SURVEY 6
1.5. THESIS OUTLINE 7
2. SYSTEM OVERVIEW 8
2.1. MISSION REQUIREMENTS 8
2.2. SYSTEM OUTLINE 9
3. SYSTEM ARCHITECTURE 10
3.1. COORDINATE FRAMES AND EULER ANGLES 10
3.2. CCD-CAMERA-GIMBAL SUBSYSTEM 13
3.2.1. Introduction 13
3.2.2. Control Scheme 14
3.3. NAVIGATION SUBSYSTEM 17
3.3.1. Position Measurement 18
3.3.1.1. Introduction 18
3.3.1.2. Position Prediction 18
3.3.2. Attitude Measurement 21
3.3.2.1. Introduction 21
3.3.2.2. Euler Angles Estimation from Gyroscope 24
3.3.2.3. Euler Angles Estimation from the Electric Compass 24
3.3.2.4. Combination of Gyroscopes and Electric Compass 26
3.3.2.5. Inclinometer Correction for Centripetal Acceleration 28
4. HARDWARE SELECTION 31
4.1. VEHICLE AND BASIC AVIONICS 31
4.2. NAVIGATION SUBSYSTEM 33
4.3. CCD-CAMERA-GIMBAL SUBSYSTEM 38
4.4. GROUND CONTROL STATION 41
5. TEST RESULTS AND DISCUSSION 44
5.1. COMBINATION OF GYROSCOPES AND ELECTRIC COMPASS 44
5.2. GROUND TEST 50
5.3. ULTRALIGHT FLIGHT TEST 50
5.4. UAV FLIGHT TEST 53
6. CONCLUSION 58
6.1. CONCLUDING REMARKS 58
6.2. FUTURE WORK 59
REFERENCE 60
VITA 63
1.Anthony Lawrence, “Modern Inertial Technology---Navigation, Guidance and Control”, 1993, Springer-Verlag, ISBN 0-387-97868-2

2.Baerveldt A.J., R. Klang, “A Low-cost and Low-weight Attitude Estimation System for an Autonomous Helicopters”, INES ´97, Budapest, Hungary, September 1997.

3.Danko Antolovic, “Development of a Real-Time Vision System for an Autonomous Model Airplane”, Master thesis, Department of Computer Science, Indiana University, October 2001.

4.David L. Rockwell, “Sensing the future of UAVs” http://www.aiaa.org/aerospace

5.Guan, W.L., Hsiao, F.B., Ho, C.S., and Huang, J.M., “Development of Low-Cost Differential Global Positioning System for Remotely Piloted Vehicles,” AIAA Journal of Aircraft, Vol. 36, No. 4, pp. 617-625, July-August, 1999.

6.Guan, W.L., Hsiao, F.B., Ho, C.S. and Huang, J.M., “Estimation of Longitudinal Aerodynamic Parameters by Differential GPS/EKF Techniques,” AIAA-99-4177, AIAA Atmospheric Flight Mechanics Conference, Portland, Oregon, 9-11 August 1999, pp.512-522.

7.GeneSys Elektronik GmbH, “Inertial Sensors and Systems”, http://www.genesys-offenburg.de/archiv/iss/inertial.htm

8.Hsiao, F.B. and Lee, M.T., “System Engineering and Practice in Aircraft Design for Aerospace Education,” UNESCO 4th Annual Conference on Engineering Education, Bangkok, Thailand, 7-10 February 2001.

9.Hsiao, F. B. and Lee, M.T., “The Development of Unmanned Aerial Vehicle in RMRL/NCKU,” 4th Pacific International Conference on Aerospace Science and Technology, Kaohsiung, Taiwan, May 21-23, 2001.

10.Hsiao, F.B. and Fang, K.J., “Real Time Attitude Determination of Remotely Piloted Vehicle Using GPS Doppler Velocity Measurements”, Transactions of The Aeronautical and Astronautical Society of Republic of China, Vol. 34, No. 2, pp. 135-142, Sep., 2002.

11.Hsiao, F.B., Lin, K.W., Lee, M.T. and Chang, W.Y. “The Development of a Low-cost MEMS Gyroscope/GPS Navigation System for Unmanned Aerial Vehicle,” 18th Bristol International UAV Systems Conference, 31 March –2 April 2003.

12.Hsiao, F.B., Lee, M.T., Chien, Y.H., Chang, W.Y., Liu, T.L. and Payne, Y.J., “The Development of a Low Cost Autonomous Surveillance Unmanned Aerial Vehicle System,” Transactions of The Aeronautical and Astronautical Society of Republic of China, Vol. 35, No. 4, 307-316, Dec. 2003.

13.Huang, W. W., “A Study of Geodetic Datum Transformation between TWD97 and TWD67 Using Transverse Mercator Coordinates,” Master thesis, Department of Surveying Engineering, National Cheng Kung University, July 2001

14.Joao Luis Marins, Xiaoping Yun, Eric R. Bachmann, Robert B. McGhee, and Michael J. Zyda, "An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG Sensors", IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.

15.John H. Blakelock, “Automatic Control of Aircraft and Missiles”, 2nd edition, 1991, Wiley Interscience, ISBN 0-471-50651-6

16.Lin, Y.R., Lu, W.C., Yang, M.H., and Hsiao, F.B., “The Development of a Low-Cost Navigation System Using GPS/RDS Technology,” ICAS-2000-7.6.3, 22nd International Congress of Aeronautical Sciences, 27 Aug.-1 Sep. 2000, Harrogate, UK.

17.Marius Niculescu, “Sensor Fusion Algorithms for Unmanned Air Vehicles”, Aerosonde Robotic Aircraft, November 2001.

18.Nelson, R. “Flight Stability and Automatic Control”, 2nd Ed., McGraw-Hill International Editions, 1998.

19.Per Skoglar, “Modeling and Control of IR/EO-gimbal for UAV Surveillance Application”, Electrical Engineering, Linkoping Institude of Technology, June 2002

20.Richard W. Cannata, Steven G. Blask, John A. Van Workum, Mubarak Shah, “Autonomous Video Registration Using Sensor Model Parameter Adjustments”, AIPR 2000, pp. 215-222.

21.Sara Waddington, “Commercial and civil missions for public service agencies: are UAVs a viable option”, Unmanned Vehicles magazine Business Analysis Forecast, December 2002.

22.Sanghyuk Park, “Examples of Estimation Filters from Recent Projects at MIT”, http://www.mit.edu/~16.324/html/Lectures/filter_examples.sanghyuk.pdf

23.Terence Betlehem, “Autonomous Submersible Robot: State Estimation System”, Department of Engineering, Australian National University, November, 1999

24.“Unmanned Aerial Vehicle,” Microsoft® Encarta® Online Encyclopedia 2004
http://encarta.msn.com

25.楊憲東, “自動飛行控制原理與實務”, 2001, 全華科技圖書股份有限公司, ISBN 957-21-3354-3
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 毛連塭(民82)。小學實施外語教學探討。教師天地,67,2-6。
2. 趙涵華(民84)。兒童語文學習理論與研究的新綜合趨勢。教育資料與研究,4,27-28。
3. 趙子嘉(民88)。談霍華德嘉納的多元智能論和英語教學,英語教學,24(2),47-62。
4. 楊式美(民90)。英語說故事指導及其在國小英語教學上之應用。國教輔導,5(40),6-10。
5. 楊式美(民89c)。英文童書。中師圖書館館訊,30,1-6。
6. 楊式美(民89b)。淺談英語童書在國小英語教學上之應用。國教輔導,39(5),8-14。
7. 楊式美(民89a)。英文童書:國小英語教材的另一選擇。中師圖書館館訊,30,1-6。
8. 黃瑞枝(民86)。邁向廿一世紀語文教育的發展與實施。中國語文,80(1),10-15。
9. 曾月紅(民90)。全語文教學的班級經營--以英語文教學為例。教育研究資訊,9(2),80-106。
10. 陳淑嬌(民87)。國小英語教學之困境。教育資料與研究,23,32-33。
11. 陳淳麗(民87)。適用於國小英語教學的教學法-聽說教學法、肢體反應教學法、溝通式教學法之介紹。國民教育,39(1),6-12。
12. 陳海泓(民90)。如何利用圖畫故事書發展兒童的創造力。語文教育通訊,23,64-78。
13. 陳貞(民87)。漫談國小英語課程。教師之友,39(2),1-3。
14. 陳玉美(民84)。故事與語言學習。英語教學,20(1),36-45。
15. 郭麗玲(民80)在畫中說故事的「圖畫書」。社教雙月刊,46,20-33。
 
系統版面圖檔 系統版面圖檔