(3.215.183.251) 您好!臺灣時間:2021/04/22 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林啟裕
研究生(外文):Chi-Yu Lin
論文名稱:低雷諾數低展弦比機翼氣動力特性之研究
論文名稱(外文):Investigation of Aerodynamic Performance on Low-Aspect-Ratio Wings at Low Reynolds Numbers
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:70
中文關鍵詞:低雷諾數空氣動力特性低展弦比
外文關鍵詞:low aspect ratiolow Reynolds numberaerodynamic performance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用風洞實驗在低雷諾數下低展弦比機翼探討氣動力特性,氣動力特性包括升力、阻力、俯仰力矩係數、升阻比及誘導阻力。展弦比為1包含有翼弧之機翼乃在於比較厚度比效應及不同展弦比氣動力特性之研究,為了更深入探討低展弦比機翼翼尖渦流之流場結構,故利用低速煙洞探討二維翼切型流場結構變化與三維機翼翼尖渦流相互干擾及影響機翼表面程度做全盤性比較探討,展弦比為1有較明顯因升力而產生之誘導阻力並且所有展弦比為1的失速攻角皆超過20度攻角,實驗結果顯示升力曲線斜率、最小阻力、誘導阻力及升阻比,厚度較薄之機翼比厚度較厚之機翼為佳. 另外有翼弧機翼之升阻比有其較佳之結果,本論文亦針對飛機性能參數做討論,實驗結果與分析數據可以提供給從事微型無人飛行載具研究者一些設計之參考。
The thesis was intended to investigate the aerodynamic characteristics of low-aspect-ratio wings at low Reynolds numbers by experiments. The aerodynamic properties, including lift, drag, pitch-moment coefficients, lift-to-drag ratio and induced drag obtained. The effects of thickness ratio and camber were investigated. The aspect ratios of most wings tested in the experiments were 1. Wings of larger aspect ratios were also tested for comparison. In order to obtain more understanding about the structures of tip vortices, flow visualizations of 2-D and 3-D wings were conducted in a smoke tunnel. The lift due to tip vortices was obvious for wings of AR=1, and their stall angles were all larger than 200. The experimental results showed that wings of smaller thickness ratio were superior on the properties of lift-curve slope, minimum drag, induced drag, and lift-to-drag ratio. Cambered wings were recommended for their better behaviors on lift-to-drag ratio. Some aircraft performance parameters were discussed. The experimental results and analysis can provide the instructions and performance data for designs of MAVs.
Contents
ABSTRACT IN CHINESE Ⅰ
ABSTARCT IN ENGLISH Ⅱ
ACKNOWLEDGEMENTS Ⅲ
CONTENTS Ⅳ
LIST OF TABLES Ⅶ
LIST OF FIGURES Ⅷ
APPENDIX Ⅹ
CHAPTER 1 INTRODUCTION 1
1.1 Motivation: Aerodynamic problems of MAVS 1
1.2 Types of Micro Aerial Vehicles 3
1.3 Airfoils at Low Reynolds Number 5
1.3.1 Separation bubbles and Reynolds number 6
1.3.2 Hysteresis of aerodynamics properties 8
1.3.3 Effects of thickness ratio and camber 9
1.4 Low Aspect Ratio Wing 10
1.4.1 Experimental investigations 10
1.4.2 Theory of low-aspect-ratio wings at high Reynolds number 12
1.4.3 Summary of low-aspect-ratio-wing theory 14
1.5 Objective 15
CHAPTER 2 EXPERIMENTAL FACILITIES 17
2.1 Low-Speed Wind Tunnel 17
2.2 Instruments and data acquisition 17
2.2.1 Three-component force balance 18
2.2.2 Pitot tube and pressure transducer 18
2.3 Smoke Tunnel 19
2.4 Test models 19
CHAPTER 3 RESULTS AND DISCUSSION 21
3.1 Slope of lift curve 21
3.1.1 Effects of thickness ratio and camber 21
3.1.2 Effects of aspect ratio 23
3.2 Drag polar 24
3.2.1 Effects of thickness ratio and camber 25
3.2.2 Effects of aspect ratio 26
3.3 lift-to-drag ratio 27
3.3.1 Effects of thickness ratio and camber 27
3.3.2 Effects of aspect ratio 28
3.4 Aircraft Performance 28
3.4.1 Available total lift 29
3.4.2 Required power 30
3.4.3 Stall angles of attack for varying aspect ratios 30
3.5 Flow visualization 31
Chapter 4. Conclusions 33
REFERENCE 35
[1] ISSMO, The International Society of Structure and Multidisciplinary Optimization, http://www.aero.ufl.edu/~issmo/
[2] DARPA, Defense Advanced Research Project Agency, http://www.darpa.mil/
[3] Szmelter, J. and Bikowski, R., “Preliminary Insight Into Aerodynamics of Flapping Wing Micro Air Vehicles (MAV) For Indoor Reconnaissanse” Journal of Battlefield Technology, Vol 4, No 2, 2001.
[4] Jones, B. M., “An Experimental Study of the Stalling of Wings” Gottingen Reports and Memoranda No.1588, 1933.
[5] Mueller,T.J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,”AAIA-83-1617, 1984.
[6]Carmichael, B. H., “Low Reynolds Number Airfoil Survey”, Vol.Ι,NASA Contractor Report 165803, 1981.
[7] Hsiao, Fei-Bin, Chang, Chia-Yuan, Hsu, Cheng-Chiang, Wang, Di-Bao, “ Experimental Studies on the Aerodynamic Performance for Finite Wing at Low Reynolds Number”, J. Chinese Society of Mechanical Engineers, Vol.23, No.6, pp.517-524, 2002.
[8]Muller, T. J., “Low Reynolds Number Vehicles,” Edited by Reshotko, E., AGARD-AG-288, 1985.
[9] Althaus, D., “Recent Wind Tunnel Experiments at Low Reynolds Numbers,” Proceedings of the Conference on Aerodynamics at Low Reynolds Numbers, The Royal Aeronautical Society, Vol. 2, Paper 18, 15th-18th, 1986.
[10] Marchman, J. F., “Aerodynamic Testing at Low Reynolds Numbers,” Journal of Aircraft , Vol.24,No.2, 1987.
[11] Mueller, T. J., “ The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” Journal of Aircraft, Vol. 22, pp763-770, 1985.
[12] Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,”AAIA-83-1617, 1984.
[13] Hsiao, F. B. and Liu, C.F. and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a low Reynolds Number Airfoil”, AIAA Journal, Vol.27, pp129-137, 1989.
[14] Lin, J.C.M. and Pauley, L. L., “Low-Reynolds-number Separation on an Airfoil” AIAA Journal, Vol.34, No.8, pp1570-1577, 1996.
[15] Grundy, T. M., Keefe, G. P. and Lowson, M. V., “Effects of Acoustic Disturbances on low Re Aerofoil Flows”, Fixed and Flapping Wing Aerodynamics for Micro Air vehicle Applications, Reston , VA, AIAA, Inc., pp91-113, 2001.
[16] O’Meara, M.M. and Mueller, T. J. “Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers” AIAA Journal Vol.25,No.8 , 1987.
[17] Selig, M. S., Gopalarathnam, A., Giguere, P., and Lyon, C. A., “Systematic Airfoil Design Studies at Low Reynolds Numbers,” AIAA Journal, Vol. 195, pp. 143-167, 2001.
[18] Lissaman, P.B.S., “Low Reynolds Number Airfoils”, Annual. Review. Fluid Mechanics., Vol. 15, pp223-239, 1983.
[19] Laitone, E.V., “ Aerodynamic Lift at Reynolds Numbers Below 7x104” AIAA Journal, Vol.34, No.9, 1996.
[20] Wei, shyy, David, A.J., Jason, S., Fredrik, K. and Mikael, N., “Airfoil Performance At Low Reynolds Numbers for Micro Air Vehicle ” Thirteenth Bristol International RPV/UAV Conference 30,1998.
[21] Kunz, P. J. and Kroo, Ilan, “Analysis and Design of Airfoils for Use at Ultar-Low Reynolds Numbers” AIAA Journal Vol.195,pp35-59,2001.
[22] Zimmerman, C. H., “Characteristics of Clark Y airfoils of small aspect ratios” Technical Report, TR 431, NACA, 1932.
[23] Winter, H., “Flow phenomena on plates and airfoils of short span” Technical Report TM 798, NACA, 1936.
[24] Bartlett, G. E. and Vidal, R. J., “Experimental investigation of influence of edge shape on the aerodynamic characteristics of low aspect ratio wings at low speeds” Journal of the Aeronautical Sciences, 1955.
[25] Pelletier, A., and Mueller, T. J., “ Low Reynolds number aerdynamics of low-aspect-ratio, thin/flat/cambered-plate wings” Journal of Aircraft, 2000.
[26] Polhamus, E. C., “A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy” Technical Report TN D-3767, NASA, 1966.
[27] Lamar, J. E., “Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds” J. of Aircraft, 1976.
[28] Hoerner, S. F., “Fluid-dynamic drag” Hoerner Fluid Dynamics, Brick Town, NJ, 1965.
[29] Hoerner, S. F. and Borst, H. V., “Fluid-dynamic lift” Hoerner Fluid Dynamics, Brick Town, NJ, 1975.
[30] Sunada, S. and Kawachi, K., “Comparison of Wing Characteristics at an Ultralow Reynolds Number” Journal of Aircraft Vol.39,No. 2 ,pp331-338, 2002.
[31] Mueller, T. J. and Torres, G. E., “Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers” AIAA Journal Vol.42. No.5, pp. 865-873, 2004.
[32] Bollay, W., “A non-linear wing theory and its application to rectangular wings of small aspect ratio” Zeitschrift Fur Angewandte Mathematik und Mechanik, 1939.
[33] Mueller, T. J., “ The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” Journal of Aircraft, Vol. 22, pp763-770, 1985.
[34] Hsiao, F. B., and Hsu, C. C., “Numerical Prediction of Aerodynamic Performance for Low Reynolds Number Airfoils”, Journal of Aircraft, Vol.26, pp.689-692, 1989.
[35] http://www.nasg.com/afdb/list-airfoil-e.phtml
[36] Lowry, J. G. and Polhamus, E. C., “A Method for Predicting Lift Increments due Flap Deflection at Low Angles of Attack in Incompressible Flow,” Gottingen TN3911, 1957.
[37] Mueller, T. J. and Torres, G. E., “Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Numbers” AIAA Journal Vol. 195, pp115-140, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔