(3.234.221.67) 您好!臺灣時間:2021/04/11 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林新登
研究生(外文):Hsin-Teng Lin
論文名稱:利用CANBus建構之小型飛機航電系統
論文名稱(外文):Establishing a High Speed Interface in General Aircraft by Controller Area Network
指導教授:林清一林清一引用關係
指導教授(外文):Chin E. Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:73
中文關鍵詞:數據匯流排航電系統通訊協定
外文關鍵詞:TTPCAN busdata busdigital avionics system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  數位航電系統已經是現代航空系統的主流。數位化電子系統以特定的匯流排介面建立各終端機間的聯繫,並具備大量不同的線上抽換單元(line-replaceable units, LRUs)的特點。整合模組航電(Integrated Modular Avionics, IMA)是將一般標準的元件或模組,依不同的功能需求整合到一個或多個抽換櫥以實現航電功能。
  在大型噴射客機IMA系統的架構下,各個航電設備或抽換櫥可透過ARINC 629通用數據匯流排相互連結整合。但對於一般的航空飛行器而言,ARINC 629數據匯流排太過龐大、複雜且其建置成本過高。因此,尋求適合一般小型航空飛行器的數據匯流排系統,是值得被提出來做為研究的。本論文提出CAN (Controller Area Network)數據匯流排和TTP/C數據匯流排,做為研究的目標。
  然而因TTP數據匯流排的可用資源少於CAN數據匯流排,本論文將焦點集中在CAN數據匯流排。論文的重心在介面模板的初步設計和通訊協定系統的測試及驗證。CAN IP發展板主要是由CAN控制器SJA1000和AT89C52 微處理器所構成。使用者人機介面則包括數據的傳送與控制命令的接收。而IP發展板也能夠連接到GPS 模組做測試。這些成果將對尋求適合小型航空飛行器的數據匯流排系統有莫大的貢獻。
   Today digital avionics system has become a main role of modern aviation system and is characterized by a large number of different line-replaceable units (LRU). Digitized electronics systems are interconnected through a specified data bus interface to each terminal. The Integrated Modular Avionics (IMA) is an idea to realize the avionic functions by common standardized elements or modules to be integrated into one or more units or cabinets for different functional domains. Several avionics hardware or cabinets are interconnected by ARINC 629 global data buses into an integrated system for performing all functions onboard of the aircraft. However for general aircraft avionics, ARINC 629 data bus organization is too huge, expensive and complicate to implement. The goal of this thesis is to study and provide an adaptable and useful interface bus system for small aircraft. CAN (Controller Area Network) bus and TTP field bus should be a good choice to study.
  Since TTP bus resource is less available than CAN bus, this thesis is started from designing their interface module board. The thesis puts emphasis on CAN bus architecture preliminary designs, system test and verification of communication protocol. The CAN IP board chosen from CAN controller SJA1000 and AT89C52 microprocessor is designed and fabricated with the human interface including data transmission and receiving control command. The IP board may also be connected to GPS module. This will contribute to an implementation for avionics data bus in general aviation aircraft.
中文摘要
ABSTRACT
誌謝
CONTENTS .............................................I
CAPTIONS OF FIGURES .............................................V
CHAPTER I INTRODUCTION .............................................1
1.1 Introduction .............................................1
1.2 Procedure of Research .............................................2
1.3 Organization of This Thesis .............................................3
CHAPTER II DIGITAL AVIONICS SYSTEM .............................................4
2.1 Integrated Modular Avionics .............................................4
2.1.1 History .............................................4
2.1.2 Goals of IMA .............................................5
2.1.3 Architecture of IMA .............................................6
2.2 Line Replaceable Modules (LRMs) .............................................9
2.3 Airframe Data Buses ............................................11
2.3.1 ARINC 629 Data Bus ............................................11
2.3.2 TTP (Time-Triggered Protocol) Field Bus ............................................13
2.3.3 CAN (Controller Area Network) Bus ............................................17
2.3.4 Comparison of CAN and TTP ............................................21
2.4 Summary of This Chapter ............................................25
CHAPTER III CONTROLLER AREA NETWORK ............................................26
3.1 Frame Type ............................................26
3.1.1 Data Frame ............................................27
3.1.2 Remote Frame ............................................29
3.1.3 Error Frame ............................................29
3.1.4 Overload Frame ............................................31
3.1.5 Interframe Spacing ............................................32
3.2 Arbitration ............................................33
3.3 Error Detecting ............................................34
3.4 Advantages and Disadvantages of CAN ............................................36
CHAPTER IV SYSTEM ARCHITECTURE ............................................37
4.1 Test Architecture ............................................37
4.2 Component of CAN IP Board ............................................38
4.2.1 CAN Controller- SJA1000 ............................................39
4.2.2 CAN Transceiver- PCA82C250 ............................................40
4.2.3 Optical Couplers- PC910 ............................................42
4.2.4 Voltage Regulators- MIC29150 ............................................43
4.2.5 Voltage Regulators- LP2950 ............................................43
4.3 Circuit Design of CAN IP Board ............................................44
4.4 Programming ............................................47
4.4.1 User Interface ............................................47
4.4.2 Firmware ............................................48
4.4.2.1 Initialization ............................................48
4.4.2.2 Transmission ............................................50
4.4.2.3 Reception ............................................50
CHAPTER V TEST AND ANALYSIS ............................................52
5.1 Process of Circuit System Test ............................................52
5.2 Data Message Transmission ............................................52
5.2.1 PC Side ............................................52
5.2.2 CAN IP Module Board Side ............................................53
5.2.3 Outcome of Test ............................................56
5.3 Hardware Test ............................................59
5.3.1 GPS Module ............................................59
5.3.2 Outcome of GPS Module Test ............................................61
5.3.3 VOR/LOC Glideslope Indicator- KI206 ............................................62
5.3.4 Outcome of KI206 Test ............................................63
5.3.5 Virtual measuring meter ............................................65
5.4 Summary ............................................66
CHAPTER VI CONCLUSION AND FUTURE STUDY ............................................67
6.1 Conclusions ............................................67
6.2 Future Study ............................................69
REFERENCES ............................................70
ACRONYMS ............................................72
[1] ARINC Report 651, “Design Guidance For Integrated Modular Avionics,” March 1999
[2] ARINC Report 650, “Integrated Modular Avionics Packaging and Interfaces,” July 1994
[3] ARINC Report 629, “Multi-Transmitter Data Bus,” March 1999
[4] H. Kopetz, “TTP/C Protocol,” TTTech, July 1999. Available at
http://www.ttpforum.org
[5] H. Kopetz, “TTP/A Protocol,” TTTech, July 1999. Available at
http://www.ttpforum.org
[6] Website, ”http://www.can-cia.de/ct.htm,” Homepage, 1992
[7] Robert Bosch GmbH, “CAN Specification Version 2.0,” Sep. 1991
[8] H. Kopetz, “A Comparison of CAN and TTP,” 1998
[9] Moxa Technologies Co., Ltd., available from website:
http://www.moxa.com.tw/product/Multiport_Serial_Boards/PCI_Boards/C168H_PCI.htm
[10] Philips, “SJA1000 Stand-alone CAN Controller,” December 1997, available from website:
http://www.semiconductors.philips.com/acrobat/datasheets/SJA1000_3.pdf
[11] Philips, “PCA82C250 CAN Controller Interface,” January 2000, available from website:
http://www.semiconductors.philips.com/acrobat/datasheets/PCA82C250_5.pdf
[12] Sharp, “PC910 Ultra-High Speed Response *OPIC Photocoupler,”
[13] Micrel, “MIC29150 High-Current Low-Dropout Regulators,” January 2004, available from website:
http://www.micrel.com/_PDF/mic29150.pdf
[14] Sipex, “100mA Low Dropout Voltage Regulators,” February 1999, available from website:
http://www.sipex.com/products/pdf/LP2950_2951.pdf
[15] 范逸之、江文賢、陳立元,民91,“C++ Builder 與 RS-232 串列通訊控制,” 初版,文魁資訊,ISBN 9574663809。
[16] 楊明豐,民92,“8051 單晶片 C 語言設計實務 :/使用 Keil C,” 初版,�眳p資訊,ISBN 986421263X。
[17] 賴麒文,民91,“C 與 8051 單晶片韌體設計./使用 Keil C,” 初版,文魁資訊,ISBN 957-466-811-8。
[18] GARMIN, “GPS Sensor Boards GPS25-LVC, GPS25-LVS, GPS25-HVS Technical Specification,” 2000, available from website:
http://www.garmin.com/manuals/GPS25LPSeries_TechnicalSpecification.pdf
[19] King Radio Corporation, “Maintenance/Overhaul Manual KI 206 VOR/LOC/GS Indicator,” September 1979, Revision 1, Manual No. 006-5137-01
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔