跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李鎔昌
研究生(外文):Jung-Chang Lee
論文名稱:觸媒燃燒微推進系統之研究
論文名稱(外文):Study of Catalytic Combustion in Micro-propulsion System
指導教授:趙怡欽
指導教授(外文):Yei-Chin Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:微推進系統微推進白金觸媒微管微機電技術
外文關鍵詞:MEMS technologyMicro-propulsion systemPlatinum catalytic micro-tubeMicro-propulsion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
微燃燒技術的研發及其於微能源與微推進等各種領域的開發應用,已成為世界各先進國家燃燒研究發展的新趨勢,以能源應用觀點,燃燒相較於傳統電池,具有高能量密度、低成本及低污染等優點,極具有開發之價值。
微尺度燃燒亦可應用於衛星的推進系統,目前藉由MEMS技術使得衛星得以縮小而更加精密,而微衛星(micro-satellite,質量介於10-100Kg),奈米衛星(nano-satellite,質量介於1-10Kg),及皮米級衛星(pico-satellite,質量小於1Kg)等小型衛星,其造價便宜、體型小、可於一次發射中酬載多枚,以及製造時程短的優點受到許多先進國家的重視,隨衛星體積重量縮小,而衛星修正姿態所需的推力也必須更小更加精確。利用微尺度燃燒做為推力來源具有體積小與可重複使用以減少成本等優點。
白金觸媒微管燃燒是燃燒科技的新領域,而將其運用在微推進系統上更是全新的嘗試,本論文希望以初步的分析討論、相關實驗及推力性能測試進行研究,以期在觸媒燃燒微推進系統作出高壓燃燒特性分析及微推進系統設計與測試的相關結果。
然而在微小化過程中燃燒系統縮小化後將面臨許多問題,其中最重要的是反應熄滅(quench),其原因包含熱損失及自由基受壁面破壞的增加等,為了能夠克服這些問題,必須應用觸媒降低反應之活化能,增加反應速率以克服熄滅的問題,使燃燒系統更有效的微小化。實驗主要以200μm 、500μm及1000μm的白金觸媒微管並分別結合尾端具有縮口之石英管進行測試,燃料則選用乾淨且易反應的氫氣作為研究的對象,並搭配自行設計之推力測試平台進行實際推力量測。
實驗結果發現:以觸媒可以成功的使燃料在小於反應熄滅半徑(quench diameter)之微管中穩定有效的反應,觸媒微管燃燒達穩定後,其微管出口之溫度將隨燃氣濃度、速度及管徑的增加而增加。當白金觸媒微管後端加上縮口時,所量測到的出口溫度降低,顯示反應變差,可能是因為當白金觸媒微管後端加上縮口時,燃燒室內部壓力增加,壓力增加代表單位體積的分子增加,使得氫氣在擴散到觸媒壁面時,因為跟其他分子碰撞的機會增加而受到阻滯,影響觸媒壁面反應的效果,所以反應效率降低,所量到的出口溫度也跟著下降。
在推力量測方面,將實際所測量出之推力值與估算之推力值做比較,並評估系統所產生之推力是否達到實際應用於微型衛星之姿態控制的推力需求。
此外,本系統之設計較之前之設計更為簡單,不但擁有體積小、重量輕等優點,在點燃系統的反應後,不需靠外加電源持續供應熱能,而只靠反應本身產生的熱便能持續維持反應之進行,對於在電力供給、體積及重量方面皆有嚴格限制的微小衛星系統上作為姿態控制元件,更顯出其可行性。
最後,希望未來能將相關的研究成果搭配微機電製程技術,以設計完整的微推進系統,並將這項新技術應用於微微衛星的姿態控制系統,使其更具有實用性。
The development of micro-combustion technique and its application in micro-power and micro-propulsion systems have attract intensive research interests and become a new research area in the developed countries. Compared to traditional batteries, combustion has higher power density, lower cost and pollution. From the view point of energy utilization, it is a more relevant and attractive candidate for micro-power generation.
Micro-combustion can also be apllied to the propulsion systems of satellites. MEMS technology at present make the satellite become smaller and more accurate. Micro-satellites (mass lies between 10-100Kg), nano-satellites (mass lies between 1-10Kg), and pico-satellites (mass is smaller than 1Kg ) ,etc. have advantages of cheaper fabrication cost, smaller, many of them can be the payload in one launch, and short fabricating time, and make them be paid more attention by a lot of advanced countries. As the weight of volume of the satellite shrinks , the thrust about attitude control of satellite must be smaller and more accurate. Use micro-combustion be the source of thrust can make system smaller and reused.
The platinum catalyst micro-combustion is a new field of combustion science and technology, and use this technology in micro-propulsion system is a brand-new try. This thesis hopes to discuss with preliminary analysis, relevant experiment and thrust performance test, and get the results about high-pressure combustion and the design of micro-propulsion system.
However, in the process of reducing the scale of combustion devices to micro-sizes, one may have to face many unexpected new problems associated with the small size. One of the most important problems is the extinction of reaction related to “quench diameter”. Quench may induced from excessive heat loss and radical depletion on the wall. In this thesis, we propose a catalytic micro-reactor to overcome the quench problem by using catalyst to decrease the activation energy, increase the reaction rate and maintain intensive reaction on the catalyst surface of a reactor of size smaller than the quench diameter. In the experiments, 200μm, 500μm and 1000μm-diameter Pt catalytic micro tubes are tested. The fuel is Hydrogen which is clean and highly active, and collocate the thrust test rack to measure the thrust.
The experimental results show that the tube-exit temperature increases with fuel concentration, velocity and tube size at steady-state conditions. When the platinum catalytic micro-tube connect with orifice in one end of tube, the temperature measured is lower than the tube that without connecting orifice.It show that the response becomes bad , may be because when the pressure increases within the combustion chamber. As the pressure increases, the molecule of unit's volume also increase , make the hydrogen blocked and increase with the chance that other molecules collide while spreading to the catalyst cliff side, make the hydrogen blocked.
In pressure measuring, the thrust measured are compared with the thrust estimated, and estimates the thrust that produced from the propulsion system is enough to use it in attitude control or not.
In addition, the design of this system is more simpler, and have not only small volume but also light weight. When the system start to react, this system can keep on react by the thermal energy which produced itself, without additional power supply.
Finally, these current results can serve as the basis for incorporation with MEMS technique for a micro-propulsion system in a pico-satellite in the future.
目錄

中文摘要
英文摘要
致謝
目錄………………………………………………………………………….. I
表目錄……………………………………………………………………….Ⅲ
圖目錄…………………………………………………………...…………. Ⅳ
第一章 緒論 ………………………………………………………………...1
1-1 前言……………………………………………………………..1
1-2 微太空飛行器…………………………………………………..3
1-3 微推進…………………………………………………………..5
1-4 微燃燒…………………………………………………………..6
1-4-1 微燃燒所遭遇的問題……………………………………7
1-5 微管觸媒燃燒的原理…………………………………………..8
1-6 研究動機………………………………………………………10
第二章 文獻回顧…………………………………………………………...13
2-1 文獻回顧……………………………………………………....13
2-1-1 微燃燒………………………………………………….13
2-1-2 微推進………………………………………………….19
2-2 問題分析………………………………………………………28
2-3 研究目的………………………………………………….…...29
第三章 初步理論分析…………………………………………………….31
第四章 實驗設備與方法………………………………………………….38
4-1 初步定性量測實驗……………………………………………38
4-1-1 實驗設備………………………………………………38
4-1-2 實驗方法與步驟………………………………………42
4-2 推力量測實驗……………………………………………….…43
4-2-1 實驗設備…………………………………………........43
4-2-2 實驗方法與步驟………………………………………45
第五章 實驗結果與討論………………………………………………….47
5-1 初步定性實驗結果…………………………………………….47
5-2 推力量測實驗結果…………………………………………….51
5-3 結果討論……………………………………………………….54
5-3-1 觸媒微管燃燒定性分析…………………………….54
5-3-2 推力量測…………………………………………….58
第六章 未來工作及展望……………………………………………..…...62
6-1 結論………………………………………………………………62
6-2 未來工作及展望…………………………………………………63
參考文獻…………………………………………………………………….65
參考文獻
Bzibziak, R.,”Miniature Cold Gas Thrusters,”AIAA Paper 92-3256,Nashville,TN,July 1992.
Carrier, G.F., Fendell, F.E., Fink IV, S.F., and McGregor, R.D., "Gaseous-Propellant Microthrusters, I. Completion of Burn Prior to Venting", Combust. Sci. and Tech., 1998, Vol. 140, pp. 169-195.
Carrier, G.F., Fendell, F.E., Fink IV, S.F.,"Gaseous-Propellant Microthrusters, II. Venting Prior to Completion of Burn", Combust. Sci. and Tech., 1998, Vol. 140, pp. 197-223.
Cooley, B.A., Walther, D.C. and Fernandez-Pello, A.C., (1999), “Exploring the Limits of Microscale Combustion,” Western States Section/The Combustion Institute.
Christopher M. Spadaccini, Xin Zhang, Christopher P. Cadou, Norihisa Miki, and Ian Waitz, (2003), “Preliminary development of a hydrocarbon-fueled catalytic micro-combustor,” Sensors and Actuators A, vol. 103, pp.219-224.
Craddock, J., and Janeski, B., “Design and Development of the Army KE ASAT ACS Thruster,”AIAA Paper 93-1959,Monterey,CA,June 1993.
Chirivella, J.,”Analysis of Transient Behavior of the 4-Newton Attitude Control Thruster of the Comet Rendezvous Asteroid Flyby(CRAF)Spacecraft,”Jet Propulsion Lab.Internal Document,JPL P.O.958214,Pasadena,CA,25 Nov.1988.
De Soete, (1967), “Stability and Propagation of Combustion Waves in Inert Porous Media,” Proceeding of Combustion Institute, vol. 11.
Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., (1996), “Numerical Modeling of Catalytic Ignition,” Proceeding of Combustion Institute, vol. 26, pp.1747-1754.
Dibble, R.W., Stårner, S.H., Masri, A.R., and Barlow, R.W., (1990), “An Improved Method of Data Acquisition and Reduction for Laser Raman-Rayleigh and Fluorescence Scattering from Multispecies,” Applied Physics, vol.51, pp.39-43.
Dimitrios C. Kyritsis, Ismael Guerrero-Arias, Subir Roychoudhury and Alessandro Gomez, (2002), “Mesoscale Power Generation by a Catalytic Combustor using Electrosprayed Liquid Hydrocarbons,” Proceeding of Combustion Institute, vol. 29.
Driscall, R., Yanger, J., Roy, M., and Kammerer, H.,”Development Tests on a 5-lbf Bipropellant Thruster Using a Platinum/Rhodium Thrust Chamber,”AIAA Paper 98-3357,34th Joint Propulsion Conf.,Cleveland,OH,July 1998.
deGroot, W.A., and Oleson, S.R.,”Chemical Microthruster Options,”AIAA Paper 96-2863,Lake Buena Vista,FL,July 1996.
Fernandez-Pello, A. Carlos, (2002), “Micro-Power Generation Using Combustion : Issues and Approaches,” Proceeding of Combustion Institute, vol. 29.
Fick, M., and Mütsch, T., ”Low Thrust and Low Cost Monopropellant Thrusters for Satellites and Satellite Constellations,”AIAA Paper 99-2592,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Gross, S.J. and Rhee, M.S.,”Low Power Draw,44mN-sec Cold Gas Micro-Thruster and Driver System,”AIAA Paper 99-2694,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Helvajian, H., "Microengineering Space Systems," chapter 2 in Microengineering for Aerospace Systems, ed. ISBN 1-884989-03-9, Aerospace Press, El Segundo, CA, and AIAA, Reston, VA, 1999.
Helvajian, H., “Micropropulsion Systems for Aircraft and Spacecraft," chapter 17 in Microengineering for Aerospace Systems, ed. ISBN 1-884989-03-9, Aerospace Press, El Segundo, CA, and AIAA, Reston, VA, 1999.
Hodge,K.F.,Allen,K.A.,and Hemmings,B.,“Development and Test of the ASAT Bipropellant Attitude Control System (ACS) Engine,”AIAA Paper 93-2587,Monterey,CA,June 1993.
Hagg, G.S., Sweeting, M.N., and Richardson, G.,Low Cost Propulsion Development for Small Satellites at The Surrey Soace Center,”Paper SSC99-XII-2,13th Annual AIAA/USU Conf. on Small Satellites, Utah State UNIV., Logan, UT, Aug. 1999.
Ian A. Waitz, Gautam Gauba, and Yang-Sheng Tzeng, (1998), “Combustors for Micro-Gas Turbine Engines,” Journal of Fluids Engineering, vol.120, pp.109-117.
Ikeda, H., Libby, P.A., and Williams, F.A., (1993), “Catalytic Combustion of Hydrogen-Air Mixtures in Stagnation Flows,” Combustion and Flame, vol. 93, pp.138-148.
Janson, S.W., Helvajian, H., Hansen, W.W., and Lodmell, Lt. J., "Microthrusters for Nanosatellites," 2nd International Conference on Integrated MicroNanotechnology for Space Applications, Pasadena, CA, April 11-15, 1999, organized by The Aerospace Corporation.
Janson, S.W., Helvajian, H., and Breuer, K., "MEMS, Microengineering and Aerospace Systems," AIAA paper 99-3802, 30th AIAA Fluid Dynamics Conference, Norfolk, VA, June 1999.
Janson, S.W., "Mass-Producible Silicon Spacecraft for 21st Century Missions," paper 99-4458, AIAA, Space Technology Conference and Exposition, Albuerque, NM, Sept. 28-30, 1999.
Janson, S.W., Helvajian, H., “Batch-Fabricated Microthrusters for Kilogram-Class Spacecraft”, Government Microcircuits Applications Conference (GOMAC), Arlington, Virginia, March 1998.
Janson, S., “Chemical and Electric Micropropusion Concepts for Nanosatellites”, AIAA paper 94-2998.
Jones, R., “JPL Microspacecraft Technology Development (MTD) Program”, JPL Internal Document, May 31, 1996
Jones, R., “Electromagnetically Lauched Micro-Miniature Spacecraft for Space Science”, JPL New Technology Report NPO- 17338/6846,6/18/87.
Jones, R. M., “Electromagnetically Lauched Micro-Miniature Spacecraft for Space Science Mission”, Journal of Spacecraft and Rockets, vol. 26, #5, Spet- Oct, 1989, p.338.
Jones, R. M., “Coffee-Can Sized Spacecraft”, Aerospace America, Oct. 1998.
Jones, R. M., “Microspacecraft Missions and Systems”, J. of the British Interplanetary Society, vol. 42, #10, Oct. 1989.
Jankowsky, R.S.,”HAN-Based Monopropellant Assessment for Spacecraft,”AIAA Paper 96-2863,Lake Buena Vista,FL,July 1996.
Kaoru Maruta, and Koichi Takeda, (2001), “Catalytic Combustion in Microchannel for MEMS Power Generation,” The 3rd Asia-Pacific Conference on Combustion, pp.219- 222.
Kaoru Maruta, and Koichi Takeda, (2002), “Extinction Limits of Catalytic Combustion in Microchannels,” Proceeding of Combustion Institute, vol. 29.
Klvas F. Jensen, (2001), “Microreaction Engineering – Is Small Better ?,” Chemical Engineering Science, vol.56, pp.293-303.
Lars Sitzki, Kevin Borer, Ewald Schuster, and Ronny, Paul D., (2001), “Combustion in Microscale Heat-Recirculating Burners,” The 3rd Asia-Pacific Conference on Combustion, pp.473- 476.
Lewis, D., Janson, S., Cohen, R. and Antonsson E., "Digital MicroPropulsion" to appear in: Sensors and Actuators A: Physical
Lewis, D., Janson, S., Cohen, R. and Antonsson E., "Digital MicroPropulsion", IEEE MEMS'99 Meeting Oral Presentation, Paper published in the Conference Proceedings.
Lewis, D., Antonsson, E., and Janson, S., “MEMS Microthruster Digital Propulsion System”, Proceedings, Formation Flying and Micro-Propulsion Workshop, Air Force Research Laboratory (AFRL), Oct. 20-21, 1998, Lancaster.
Mitterauer, J., “Prospects of Liquid Metal Ion Thrusters for Electric Propulsion”, IEPC Paper 91-105.
Mueller, J., Chakraborty I., Vargo S., Bame D, and Marrese C.,“MEMS-Micropropulsion Activities at JPL”, the 2nd International Conference on Integrated MicroNanotechnology for Space Applications pp.175-200.
Morgen, O.M. and Meinhardt ,D.S.,”Monopropellant Selection Criteria –Hydrazine and Other Options,”AIAA Paper 99-2595,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Mittendorf, D.,Facinelli, w.,and Sarpolus, R.,”Experimental Development of a Monopropellant for Space Propulsion Systems,”AIAA Paper 97-2951,33rd Joint Propulsion Conf., Seattle,WA,July 1997.
Meinhardt, D., Brewster, G., Christofferson, S., and Wucherer, E.,”Development and Testing of New, HAN-Based Monopropallents in Small Rocket Thrusters,”AIAA Paper 98-3357,34th Joint Propulsion Conf.,Cleveland,OH,July 1998.
Meinhardt, D., Brewster, G., Christofferson, S., Wucherer, E.,and Reed, B.,”Performance and Life Testing of Small HAN Thruster,”AIAA Paper 99-2881,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Morash, D.H.,and Strand, L.,”Miniature Propulsion Components for Pluto Fast Flyby Spacecraft,”AIAA Paper 94-3374 Indianapolis,IN,June 1994.
Parker, M., Thunnissen, D., Blandino, J.,and Ganapathi, G.,”The Prelimilary Design and Status of a Hydrazine Millinewton Thruster Development,”AIAA Paper 99-2596,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Ronny, Paul D., (2002), “Analysis of Non-adiabatic Heat-recirculating combustors,” Proceeding of Combustion Institute, vol. 29.
Ruttle, D., and Fitzsimmons, M.,“Development of Miniatu re 35-lbf Fast Response Bipropellant Divert Thruster,”AIAA Paper 93-2585,Monterey,CA,June 1993.
Rosenberg, S.D. and Schoenmann,L.,”New Generation of High-Performance Engines for Spacecraft Propulsion,”Journal of Propulsion and Power ,Vol.10,No.1,1994.pp.40-46.
Schefer, R.W., Robben, F., and Cheng R.K., (1980), “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer: I. Experimental Results,” Combustion and Flame, vol.38, pp.51-63.
Schneider, Steven J., Boyarko, George A., and Sung, Chih-Jen, (2003), “Catalyzed Ignition of Bipropellants in Microtubes,” the 41st Aerospace Science Meeting.
Srinivasan, R., Firebaugh, S.L., Hsing, I-M., Ryley, J., Jensen, M.P., and Schmidt, M.A., (1997), “Chemical Performance and High Temperature Characterization of Micromachined Chemical Reactors,” International Conference on Solid-State Sensors and Actuators.
Siegfried W. Janson, Henry Helvajian, William W. Hansen and Lt. Johm Lodmell“Microthrusters for Nanosatellites”, the 2nd International Conference.
Schwende, M.A., Schulte, G., Dargies ,E., Gotzig U,. and Scharli, E,.“New Generation of Low Thrust Bi-propellant Engines in Qualification Process,”AIAA Paper 93-2120,Monterey,CA,June 1993.
Strand, L., Toews, H., Schwartz, K., and Milewski, R.,”Extended Duty Cycle Testing of Spacecraft Propulsion Miniaturized Components,”AIAA Paper 95-2810,San Diego,CA,July 1995.
Veser, G., Friedrich, G., Freygang, M.; Zengerle, (1999), “A Micro Reaction Tool For Heterogeneous Catalytic Gas Phase Reactions,” The 12th IEEE International Conference, pp.394-399.
Veser, G., (2001), “Experimental and Theoretical Investigation of H2 Oxidation in a High-temperature Catalytic Microreactor,” Chemical Engineering Science, vol.56, pp.1265-1273.
Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., and Aksay, I.A., (2002), “Development of a Microreactor as a Thermal Source for MEMS Power Generation,” Proceeding of Combustion Institute, vol. 29.
Weinberg, F. J., Rowe, D.M., Min, G., and Ronney, P., (2002), “On Thermoelectric Power Conversion From Heat Re-circulation Combustion Systems,” Proceeding of Combustion Institute, vol. 29.
Wichmann, H.,and Fitzssimmons,M.,”Miniature High Performance Delta V Engine,”AIAA Paper 93-2582,Monterey,CA,June 1993.
Wernimont, E. and Mullens, p.,”Recent Developments in Hydrogen Peroxide Monopropellant Devices,”AIAA Paper 99-2741,35th Joint Propulsion Conf.,Los Angeles,CA,June 1999.
Whitehead, J.C., Dittman, M.D., and Ledebur, A.G.,”Progress Toward Hydrogen Peroxide Micropropulsion,”Paper SSC99-XII-5,13th Annual AIAA/USU Conf. on Small Satellites, Utah State UNIV., Logan, UT, Aug. 1999.
Youngner, D. and Choueiri, E., “MEMS Mega-Pixel Microthruster Arrays for Micro-Satellites”, Proceedings, Formation Flying and Micro-Propulsion Workshop, Air Force Research Laboratory (AFRL), Oct. 20-21, 1998, Lancaster.
Zamashchikov, V.V., (1995), “Combustion of Gases in Thin-walled Small-diameter Tubes,” Combustion, Explosion and Shock Waves, vol.31, pp.20-22.
Zamashchikov, V.V., (1997), “Experimental Investigation of Gas Combustion Regimes in Narrow Tubes,” Combustion and Flame, vol.108, pp.357-359.
Zamashchikov, V.V., (2001), “An Investigation of Gas Combustion in a Narrow Tube,” Combustion Science and Technology, vol.166, pp.1-14.
許紘瑋, (1998), “觸媒穩駐燃燒之初步研究,” 國立成功大學航空太空工程學系碩士論文.
廖仁瑞, (2002), “微機電技術製作之白金觸媒反應系統的研發,” 國立成功大學航空太空工程學系碩士論文.
許家睿, (2003), “拉曼散射量測與數值模擬應用於觸媒微管燃燒之研究”, 國立成功大學航空太空工程學系碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林菁(民87)。「一個教學與科技整合的理想-談國小教學資源中心」。教學科技與媒體,38期。
2. 林勝義(民88)。「從九年一貫課程改革談圖書館因應策略」。社教資料雜誌,255期,頁1-6。
3. 林勝義(民86)。圖書館領域的教育改革。高中圖書館,18期,11-14。
4. 林清江(民86)。教育改革的前景。成人教育,35期,頁2-5。
5. 林美和(民85)。「終身教育體系的學校圖書館定位與角色功能」。高中圖書館,17期。頁18-22。
6. 林美和(民83)。「學校圖書館支援教學活動應有的理念與做法」。高中圖書館館訊,7期。頁4-7。
7. 林珊如、袁賢銘、劉旨峰(民91)。以大學生學習動機與學習策略預測網路同儕互評之學習成就。教學科技與媒體,57,2-11。
8. 李家若(民88)。「學校圖書館對教師進修所應扮演的角色」。社教雙月刊,頁51-52。
9. 李世忠(民89)。「視聽中心的未來走向」。視聽教育雙月刊,31卷5期。
10. 吳清山(民86)。「學習型組織理論及其對教育革新的啟示」。國教月刊,43卷5、6期。
11. 吳財順(民90)。「閱讀教育與圖書館」。北縣教育,39期,頁 6-12。
12. 吳美美(民86)。從教育的需求看台灣地區二十一世紀的圖書館發展。中國圖書館學會會訊,5卷1期。
13. 何福田(民87)。「圖書館在教育改革中所扮演的角色」。社教資料雜誌,243期,頁1-3。
14. 何文慶(民90)。「公共圖書館與九年一貫課程」。北縣教育,39期,頁68-72。
15. 朱則剛(民87)。「圖書館與教育改革」。社教資料雜誌,243期,頁4-7。