|
【1】洛夫, 林德賽, 郭雅君, 楊雅婷, ‘‘乳房聖經’’
【2】http://www.doh.gov.tw/NewVersion/index.asp
【3】http://www.doh.gov.tw/statistic/index.htm
【4】季瑋珠, 張金堅, “本土醫學資料庫之建立及衛生政策上 之應用”, 1993。
【5】X. Zhou, R. Gordon, “Detection of early breast cancer: an overview and future prospects,” Critical Review in Biomedical Engineering, 17, pp. 203-255, 1989.
【6】K. F. Schmidt, “A better breast test,”Science News, 143, pp. 392-393, 1993.
【7】Newsweek, May 10, p. 64, 1993.
【8】D. J. Vyborny, “Can computers help radiologists read mammograms,” Radiology, 191, pp. 315-317, 1994.
【9】“The national breast a and cervical cancer early detection program,” CDC U.S. Department of health and human services, 1997.
【10】R.H. Gold, L.W. Bassett, “X-ray mammography : History, controversy, and state of art in mammography, thermography and ultrasound in breast cancer detection,” Grune&Straton, 1982.
【11】S.M. Lai, X. Li, W.F. Bischof, “On techniques for detecting circumscribed masses in mammograms,” IEEE Trans. Med. Image, Vol. 8, pp. 377-386, 1990.
【12】D. Brzakovic, X.M. Luo, P. Brzakovic, “An approach to automated detection of tumors in mammography,” IEEE Trans. Med. Image, Vol. 9, pp.233-241, 1990.
【13】F.F. Yin, M.L. Giger, K. Doi, C.D. Metz, C.J. Vyborny, R.A. Schmidt, “Computerized detection of masses in digital mammograms : Analysis of bilateral subtraction images,” Med. Phys. Vol. 18, pp. 955-963, 1991.
【14】I. Christoyianni, E. Dermatas, G. Kokkinakis, “Neural classification of abnormals tissue in digital mammography using statistical features of the texture,” Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on , Volume: 1 , 1999.
【15】I. Christoyianni, E. Dermatas, G. Kokkinakis, “Fast detection of masses in computer-aided mammography,” IEEE Signal Processing Magazine, pp. 54-64. January 2000.
【16】B. Aldrich, M. Desai, “Application of spatial grey level dependence methods to digitized mammograms,” IEEE, 1994.
【17】H.P. Chan, “Image feature analysis and computer- aided diagnosis in digital radiology : Automated detection of microcalcifications in mammography,” Med. Phy., Vol. 14, No. 4, pp. 538-548, 1987.
【18】A.P. Dhawan, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Medical Image, Vol. M2-5, No.5, March 1986.
【19】C.M. Kocur, S.K. Rogers, L.R. Myers, T. Burns, M Kabrisky., J.W. Hoffmeister, K.W. Bauer, J.M. Steppe, “Using neural networks to select wavelet features for breast cancer diagnosis,’’ IEEE Engineering in Med. and Bio., Vol. 15, Issue 3, pp. 95-102, May/June 1996.
【20】H. Kobatake, Y. Yoshinaga, M. Murakai, “Automatic detection of malignant tumors mammogram,” IEEE Trans. Med. Image, Vol. 3, pp. 407-410, 1994.
【21】H. Kobatake, Y. Yoshinaga, ‘‘Detection of spicules on mammogram based on skeleton analysis,’’ IEEE Trans. Med. Image, Vol. 15, Issue 3, pp. 235-245, June 1996.
【22】M. Sameti, R.K. Ward, J. Morgan-Parkes, B. Palcic, ‘‘A method for detection of malignant masses in digitized mammograms using a fuzzy segmentation algorithm,’’ IEEE Engineering in Med. and Bio., Vol. 2, pp. 513-516, Nov. 1997.
【23】L. Hadjiiski, B. Sahiner, Heang-Ping Chan, N. Petrick, M. Helvie, ‘‘Classification of malignant and benign masses based on hybrid ART2LDA approach,’’ IEEE Trans. Med. Image, Vol.18, Issue 12, pp.1178-1187, Dec. 1999.
【24】N.R. Mudigonda, R.M. Rangayyan, J.E. Leo Desautels, ‘‘Gradient and texture analysis for the classification of mammographic masses,’’ IEEE Trans. Med. Image, Vol. 19, No. 10, pp. 1032-1043, Oct. 2000.
【25】B. Verma and J. Zakos, ‘‘A comuter-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques,’’ IEEE Trans. Biomedi, Vol. 5, No. 1, pp. 46-54, Mar. 2001.
【26】N. Otsu, ‘‘A threshold selection method from gray-level histogram,’’ IEEE Trans. Syst., Man, Cybern. , Vol. SMC-9, No. 1, pp.62-66, 1979.
【27】J. Kittler and J. Illingwroth, ‘‘On threshold selection using clustering criteria,’’ IEEE Trans. Syst., Man, Cybern. , Vol. SMC-15, No. 5, pp.652-655, 1985.
【28】P.K. Sahoo, S.Soltani and A. K. Wong, ‘‘A survey of thresholding techniques,’’ Comp. Vision, Graphics, Image Proc., Vol. 41, No. 2, pp.233-260, 1988.
【29】N.K. Pal and S.K. Pal, ‘‘Entropic thresholding,’’ Signal Processing. pp.97-108, 1989.
【30】C.Y. Enderwick and Ecangelia Micheli-Tzanakou, ‘‘Classification of mammographic tissue using shape and texture features,’’ Proce.-19th International Conference-IEEE/EMBS Oct. 30-Nov. 2, pp. 810-813, 1997.
【31】H. Kobatake, M. Murakami, H. Takeo and S. Nawano, ‘‘Computerized detection of malignant tumors on digital mammograms,’’ IEEE Trans. Med. Image, Vol.18, No. 5, pp. 369-378, May 1999.
【32】廖有千, ‘‘紋路特徵值分析應用於乳房X光片攝影之腫瘤偵測.’’ 國立成功大學資訊工程系碩士論文, 90年度.
【33】H. P. Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt, and N. Petrick, ‘‘Computer-aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space,’’ Phys. Med. Biol. Vol. 40, No. 5, pp. 857-876, May 1995.
【34】D. Wei, H. P. Chan, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt, and N. Petrick, ‘‘Classification of mass and normal breast tissue on digital mammograms: Multiresolution texture analysis,’’ Med. Phys. Vol. 22, pp.1501-1513, 1995.
【35】D. F. Specht, ‘‘Probabilistic neural network and the polynomial Adaline as complementary techniques for classification,’’ IEEE Trans. On Neural Networks, pp. 111-121.
【36】D. F. Specht, ‘‘Probabilistic neural networks,’’ Neural Networks, Vol. 3, pp.109-118, 1990.
【37】J. Moody and C. Darken, ‘‘Fast learning in networks of locally-tuned processing units,’’ Neural Comput, Vol. 1, pp.281-294, 1989.
【38】M. J. D. Powell, ‘‘Radial basis function for multivariable interpolation: A review,’’ in Algorithms for Approximation, eds., J. C. Mason and M. G. Cox, Oxford University Press, pp.143-167, 1987.
【39】A. K. Jain, “Fundamentals of Digital Image Processing,” Englewood Cliffs, NJ: Prentice-Hall, 1989.
|