# 臺灣博碩士論文加值系統

(44.192.20.240) 您好！臺灣時間：2024/02/25 00:49

:::

### 詳目顯示

:

• 被引用:6
• 點閱:488
• 評分:
• 下載:101
• 書目收藏:1
 在軟體工程的領域中，如何去估算軟體發展的成本與時程是最困難但也是最重要的一部份。本文旨在提供一個如何利用迴歸分析方法來預測軟體發展時程的指引，並以軟體發展時程發生變異原因的角度為出發點，界定軟體時程發生變異的共同影響因子，並以這些影響因子來建立與解釋軟體發展時程模型，進而藉以預測軟體發展時程。　　首先，我們利用魚骨圖與變異數分析方法界定了軟體發展時程變異發生的共同影響因子，並以簡單迴歸分析方法建立各個因子的軟體發展時程模型。接著，我們利用了複迴歸分析方法建立了多重因子的軟體發展時程模型，並且說明了預測區間的計算方法。最後，我們利用了逐步迴歸分析演算法來精緻化所建立的軟體發展時程模型，排除了有預測能力但重疊性高的因子。除此之外，我們亦介紹了非線性的軟體發展時程模型的建立方法。
 In software engineering it is very difficult but critical to forecast how much effort and time it will take to develop a system. The objective of this thesis is to provide a guideline to estimating the software development schedule when using the regression analysis techniques. The common causes of schedule variation will be identified first, and then be employed to construct and explain the software development schedule model.　　We first use fishbone diagram and ANOVA approaches to identifying the common causes of schedule variation, and then establish the software development models in association with each individual factor. Next, we establish multiple-factor software development schedule model and give an example to compute the prediction interval. Lastly, we use the stepwise regression algorithm to refine the software development schedule model, i.e, removing the factor with prediction power but without contribution to the model. In addition, we also introduce nonlinear software development schedule model.
 Table of Contents ivList of Tables viList of Figures viiChapter 1 Introduction - 1 - 1.1 Motivation - 1 - 1.2 Organization - 3 -Chapter 2 Common Estimation Techniques - 4 - 2.1 Expert Judgment - 4 - 2.2 COCOMO - 5 - 2.3 Function Points Analysis - 9 -Chapter 3 Software Development Schedule Model - 11 - 3.1 Dependent Variable - 11 - 3.2 Independent Variables - 12 - 3.2.1 Total Number of Requirements - 12 - 3.2.2 Requirements Complexity - 13 - 3.2.3 Total Number of Requirements Changes - 14 - 3.2.4 Staff’s domain knowledge and Experience - 14 - 3.2.5 Number of Personnel - 14 - 3.2.6 Use of Tools - 14 - 3.2.7 Number of Methods Use - 15 - 3.2.8 Customer Participation - 16 - 3.3 Cause and Effect Analysis - 17 - 3.4 Validation of the Independent Variables - 18 - 3.4.1 Simple Linear Regression - 19 - 3.4.2 Analysis of Variance (ANOVA) - 22 - 3.4.3 Results of Data Set - 24 - 3.5 Assessment of the Schedule Model - 26 - 3.5.1 Evaluation Criteria - 26 - 3.5.2 Results of Schedule Model Assessment - 27 - 3.6 Application of Multiple Linear Regression - 27 - 3.6.1 Multiple Linear Regression - 28 - 3.6.2 Multiple Linear Regression Model - 31 - 3.7 Prediction Interval - 33 - 3.7.1 Interval Estimation Method - 33 - 3.7.2 Example of Prediction Interval - 35 -Chapter 4 Application of Stepwise Regression for Model Refinement - 37 -4.1 Forward Stepwise Regression - 38 - 4.1.1 Example of Forward Stepwise Regression - 40 -4.2 Backward Stepwise Regression - 44 - 4.2.1 Example of Backward Stepwise Regression - 45 -4.3 Stepwise Regression - 47 - 4.3.1 Example of Stepwise Regression - 48 -Chapter 5 Application of Nonlinear Regression - 54 -5.1 Variable Transformation - 54 -5.2 Example of Nonlinear Schedule Model - 56 -Chapter 6 Conclusions and Discussion - 58 -References - 61 -Appendix A Data Generation - 65 -Appendix B Process Performance Modeling Tool - 67 -
 [1]A. Abran, “Function point models: empirical conditions for reliability and ease of use,” in Proc. European Software Cost Modeling Conference. Ivrea, Italy: 1994.[2]A. Abran and P. Robillard, “Function Point Analysis: An Empirical Study of Its Measurement Processes,” IEEE Trans. Software Eng., vol. 22, pp. 895-910, Dec. 1996.[3]A. J. Albrecht and J. R. Gaffney, “Software function, source lines of code, and development effort prediction: A software science validation,” IEEE Trans. Software Eng., vol. 9, no6, pp. 629-648, Jun. 1983.[4]B. E. Barrett and R. F. Ling, “General classes of influence measures for multivariate regression.,” J. American Statistical Assoc., vol.87, pp. 184-191, 1992.[5]J. Bielak, “Improving Size Estimates using Historical Data,” IEEE Software, pp. 27-35, Nov./Dec. 2000.[6]B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II, Prentice-Hall, Inc., 2000.[7]B. Boehm, W. Barry, Software Engineering Economics, Englewood Cliffs, NJ, Prentice-Hall: 1981.[8] J. Dreger, Function Point Analysis. Prentice-Hall, Inc., 1989.[9]F. A. Graybill, and H. K. Iyer, Regression Analysis: Concepts and Applications, Duxbury Press, 1994.[10]D. R. Jeffery and J. Stathis, “Specification-Based Software Sizing: an Empirical Investigation of Function Metrics,” Porc. NASA Goddard Software Eng. Workshop, Greenbelt, Md., 1993.[11]P. Johnson, C. Moore, J. Dane, and R. Brewer, “Empirically Guided Software Effort Guesstimation,” IEEE Software, pp. 51-56, Nov./Dec. 2000.[12]C. F. Kemerer, “An Empirical Validation of Software Cost Estimation Models,” Commun. ACM, vol. 30, no. 5, pp. 416-429, 1987.[13]B. A. Kitchenham, “Empirical studies of assumptions that underlie software cost estimation models,” Information & Softw. Technol , 34(4), pp211-281, 1992.[14]B. A. Kitchenham and K. Kansala, “Inter-Item Correlations Among Function Points,” 1st Int’l Software Metrics Symp. , Baltimore, IEEE Computer Society Press, Los Alamitors, Calif., 1993, pp11-14.[15]B. A. Kitchenham, N. R. Taylor, “Software Project Development Cost Estimation,” The Journal of Systems and Software , vol. 5, pp. 267-278, 1985.[16]W. E. Lehder, D. P. Smith, and W. D. Yu, “Software Estimation Technology, “AT&T Tech. J., vol. 67, no1, pp. 10-18, July/Aug., 1988.[17]J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software Development Cost Estimation Using Function Points,” IEEE Trans. Software Eng., vol. 20, no. 4, pp. 275-287, APR. 1994.[18]D.Maxwell, D. Forselius, “Benchmarking Software Development Producivity,” IEEE Software, pp. 80-88, Jan./Feb. 2000.[19]T. Mukhopadhyay and S. Kekre, “Software Effort Models for Early Estimation of Process Control Applications,” IEEE Trans. Software Eng., vol. 18, no. 10, pp. 915-924, Oct. 1992.[20]J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, Applied Linear Regression Models, Third Edition, Mc Graw Hill, 1999.[21]S. Oligny, P. Bourque, and A. Abran, “An empirical Assessment of Project Duration in Software Engineering,” In: Proceedings of the ESCOM 1997, Berlin, 1997.[22]R. S. Pressman, Software Engineering: A Practitioner’s Approach, Fifth Edition, Mc Graw Hill, 2001.[23]CMMI Product Team, Capability Maturity Model, Integration (CMMI), Version 1.1, 2001[24]K. Reifer, J. Donald, “A Poor Man’s Guide to Estimating Software Costs”, Tutorial, Software Management: Third Edition, Washington, DC, IEEE Computer Society Press: 1986, pp. 153-163.[25]I. Sommerville, Software Engineering, Sixth Edition, Addison-Wesley, 2001.[26] http://www.softstarsystems.com/overview.htm
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 專利資訊預測技術模式之研究-奈米碳管場發射顯示器等之比較分析 2 計算網頁應用程式開發專案功能複雜度之系統設計與實作 3 優養化複雜系統分析與管理策略研究 4 以模糊層級分析法探討台灣地區影響軟體專案成本因素 5 資訊軟體開發成本之模式建立 6 資訊軟體開發成本之模式建立 7 以類神經網路建構石門水庫集水區泥砂濃度推估模式 8 空間資料估計與預測的計算問題

 1 13.洪明洲(1995)，「臺商投資大陸的先發後進策略之比較」，理論與政策。

 1 以油酸分散膠體配合氣氛加熱製造高溫相二氧化鈦微粉之研究 2 (BiFeO3-BaTiO3)系統之合成、特性、及介電性質 3 氣候變遷下屏東平原地下水資源利用之預測 4 陳化處理對化學沈澱法生成之奈米二氧化鈦粉末之晶粒成長及相轉換的影響 5 結合比對過濾機制之蛋白質序列分群方法 6 以內容為基礎之XML文件分類方法之研究 7 導入概念階層觀念以改善分群演算法之績效 8 基於監控網路效能所提出之追蹤與緩和分散式阻斷服務攻擊的新方法 9 應用於指動偵測之腦波訊號分析系統 10 多源分類決策融合之參數式權重估測法 11 以多階層性關聯法則為基礎之圖片分類 12 基於軟式計算技術之智慧型影像濾波器 13 在行動IP網路上,多個本籍代理人的負載平衡策略 14 利用時間與空間資訊追蹤汽車影像序列之智慧型駕駛輔助系統 15 多媒體資料庫中具時間性之空間樣板探勘

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室