(34.204.201.220) 您好!臺灣時間:2021/04/20 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖文章
研究生(外文):Weng-Chang Liao
論文名稱:高介電常數之低溫共燒玻璃-陶瓷燒結與結晶行為之研究
論文名稱(外文):Sintering and crystallization behavior of high dielectric glass-ceramic for low temperature co-firable ceramics
指導教授:向性一
指導教授(外文):Hsing-I Hsiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:84
中文關鍵詞:結晶行為燒結行為低溫共燒玻璃陶瓷
外文關鍵詞:Crystallization behaviorSintering behaviorLow temperature cofire ceramic
相關次數:
  • 被引用被引用:5
  • 點閱點閱:233
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究在探討具高介電常數之Nd2O3-TiO2-SiO2玻璃陶瓷的結晶、緻密化行為及其微結構與介電性質間的關係。藉由EPMA分析此玻璃系統的組成主要為Ti- Nd- Zn- Ba- Si- Sr- Pr- Ca,並利用熱分析(DTA、TMA)、X光繞射分析(XRD)量測此玻璃系統在不同升溫速率下的玻璃轉換溫度、結晶溫度與熱收縮行為,研究玻璃系統在非等溫燒結下之緻密行為與結晶行為的關係,並利用等溫燒結計算玻璃緻密化的活化能。結果發現隨升溫速率的加快,使結晶溫度往高溫移動,因而有較佳之緻密化行為。此玻璃陶瓷在燒結過程中析出兩種結晶相,分別為Nd2Ti4O11與Nd0.66TiO3,而其結晶量之多寡會受到升溫速率之影響。其中以20℃/min的升溫速率下,有較多之Nd0.66TiO3(850℃)結晶析出量,而具有較高之介電常數與較佳的品質因子。
  第二部分討論Al2O3添加劑對Nd2O3-TiO2-SiO2玻璃陶瓷的緻密行為、結晶行為,與介電性質之影響。結果發現,加入Al2O3會部份熔入玻璃結構中,形成新的Nd-Ti-Al-Si的玻璃系統,而使玻璃結構與玻璃黏度改變,進而影響玻璃的結晶行為,其結晶相分別為Nd2Ti3O8.7、Nd2Ti2O7與Nd2Ti4O11。其中隨Al2O3添加量的增加會使影響坏體的緻密化能力降低,但Al2O3添加量在5~30vol%之間的玻璃-陶瓷系統在900℃持溫一小時之樣品皆可燒結緻密,且樣品之K值隨Al2O3 (K=9.8)添加量增多而降低,皆具有良好的品質因子。
  The crystallization,densification behaviors and dielectric properties of high dielectric constant glass ceramics (Nd2O3-TiO2-SiO2 system) have been investigated. Using EPMA, DTA、TMA and XRD. The results showed that a higher heating rate shifted crystallization to a higher temperature and achieved complete densification more easily. The phases precipitated from the glass were Nd2Ti4O11 and Nd0.66TiO3, and the amount of precipitated phases were influeneced by the heating rate. For the sample with 20℃/min heating rate, the glass had higher dielectric constant and quality factor due to the more amount of Nd0.66TiO3 phase.
  Effect of alumina additives on densification, crystallization behaviors and dielectric properties of the glass ceramics were also investigated in this studies. The results showed alumina would dissolve into glass structure and change the glass viscosity, and then formed a new Nd-Ti-Al-Si glass system. The phases precipitated from the glass with addition of alumina were Nd2Ti3O8.7、Nd2Ti2O7 and Nd2Ti4O11. The full densification of specimens with addition 5~30vol% alumina can be achieved at 900℃/1h. However,the those dielectric constant and quality factor decreased with increasing the addition of alumina .
摘要………………………………………………I
Abstract II
致謝…………………………………………………………………………III
目錄………………………………………………………………………IV
圖目錄 VI
表目錄 IX
第一章 前言與研究目的 1
1.1研究目的 1
第二章 前人研究與理論基礎 3
2.1低溫共燒陶瓷(LTCC)的發展與演進 3
2.2 LTCC系統的玻璃陶瓷 8
2.3 LTCC材料的開發與應用 11
2.4玻璃陶瓷的緻密化 12
2.4.1與結晶陶瓷系統的差異性 12
2.4.2黏性燒結 13
2.4.3緻密化與結晶溫度的關係 14
2.4.4等溫燒結與非等溫燒結 15
2.4.5成分對燒結性的影響 15
2.4.6組成對結晶的效應 15
2.4.7製程對玻璃陶瓷的影響 20
2.5玻璃陶瓷的介電性質 21
第三章 實驗步驟與方法 23
3.1實驗流程圖 23
3.2試片製備 25
3.3熱分析 26
3.3.1熱重熱差分析(TG/DTA) 26
3.3.2熱收縮行為分析(TMA) 26
3.4燒結熱處理 26
3.4.1等溫燒結(isothermal sintering) 26
3.4.2非等溫燒結(nonisothermal sintering) 26
3.5性質分析 27
3.5.1化學組成分析 27
3.5.2密度量測 27
3.5.3顯微結構觀察 27
3.5.4 X光繞射分析 28
3.5.5電性量測 29
第四章 結果與討論 30
4.1高介電常數之低溫共燒玻璃-陶瓷燒結與結晶行為之研究 30
4.1.1基本性質 30
4.1.1.1元素分析 30
4.1.1.2 熱分析 32
4.1.1.3結晶行為 38
4.1.2非等溫燒結 38
4.1.2.1 非等溫燒結之緻密行為 38
4.1.2.2 非等溫燒結之結晶行為 41
4.1.2.2 非等溫燒結(nonisothermal sintering)之結晶行為 49
4.1.3等溫燒結之緻密化活化能 50
4.1.4緻密化與結晶相對介電性質之影響 53
4.1.4.1玻璃結晶行為對介電常數(K值)之影響 53
4.1.4.2玻璃之結晶行為對品質因子(Q值)之影響 59
4.2添加Al2O3對高介電常數之低溫共燒玻璃-陶瓷燒結與結晶行為之影響 62
4.2.1 添加劑Al2O3與純玻璃間之化學反應 62
4.2.2 添加Al2O3之玻璃系統之結晶行為 65
4.2.3 添加Al2O3之玻璃系統之緻密行為 70
4.2.4 比較添加30vol%Al2O3對純玻璃緻密活化能分析 73
4.2.5 添加Al2O3對玻璃系統介電常數(K值)之影響 75
4.2.6 添加Al2O3對玻璃之品質因子(Q值)之影響 76
第五章、結論 78
參考文獻…………………………………………………………………79
附錄A…………………………………………………………………… 82
附錄B………………………………………………………………… …83
附錄C……………………………………………………………… ……84
1. Y. C. Fang, “Effect of oxide additive on densification and devitrification kinectics and mechnism of glass-ceramic,” Doctor of Philosophy in materials science and engineering ,(2001),NTHU.
2. 徐福嘉,LTCC材料的生產及應用實例, 陶業季刊第21卷第四期2002年,P.66~72。
3. J. H. Jean and T. K. Gupta, “Principle of the development of a silicate dielectric for microelectronic packaging,” J. Mater. Res., 11 [1] (1986).
4. O. Dernovsek, A. Naeini ,G. Preu, W. Wersing, M. Eberstein and W.A. Schiller, “LTCC glass-ceramic composite for microwave application,” J. Euro. Ceram. Soc., 21 (2001) 1693-1697.
5. 方士庭,應用於高頻無線通訊之多層低溫共燒陶瓷(LTCC)的設計技術, 陶業季刊第21卷第四期2002年,P.55~65。
6. C. L. Lo, J. G. Duh and B. S. Chiou, “Low temperature sintering and crystallization behavior of low loss anorthite-based glass-ceramic,” J. Mater. Sci., 38 (2003) 693-698.
7. W. D. Kingery, H. K.Bowen and D. R. Uhlmann, Introduction to Ceramic, 2nded. John Wiley, New York (1976) Ch.2、5、10&14.
8. Y. M. Sung and J. S. Park, “Sintering and crystallization of (SrO,SiO2)- (SrO,Al2O3,SiO2) glass-ceramics,” J. Mater. Sci., 34 (1999) 5803-5809.
9. G. H. Hwang, H. J. Jeon and Y. S. Kim, “Physical properties of barrier ribs of plasma display panels: Formation of pores during sintering of lead borosilicate glass frits,” J. Am. Ceram. Soc., 85 [12] (2002) 2956-60.
10. J. H. Jean, J. I. Shin, C. R. Chang and C. H. Lin, “Densification Kinetics and mechanism of a low-dielectric glass composite,” Mater. Chem. Phys., 41 (1995) 260-265.
11. M. Prudenziati, B. Morten, B. Forti, A. F. Gualtieri and G. M. Dilliway, “Devitrification kinectics of high lead glass for hybrid microelectronics,” Inter. J. Inor. Mater., 3 (2001) 667-674.
12. M. Uo, K. Morita, H. I. A and Makishima, “The effect of rare-earth oxides on the crystallization of CaO-Al2O3-SiO2 glasses,” J. Mater. Sci.,33 (1998) 749-754.
13. A. W. A. El-Shennawi, E. M. A. Hamzawy, G. A. Khater and A. A. Omar, “Crystallization of some aluminosilicate glasses,” Ceram. Inter., 27 (2001) 725~730.
14. D. U. Tulyaganov, M. J. Ribeiro and J. A. Labrincha, “Development of glass-ceramics by sintering and crystallization of fine powders of calcium- magnesium-aluminosilicate glass,” Ceram. Inter., 28 (2002) 515~520.
15. E. Tkalcec, S. Kurajica and H. Ivankovic, “Isothermal and nonisothermal crystallization kinectics of zinc-aluminosilicate glasses,” Thermochimica Acta, 378 (2001) 135-144.
16. Y. Hu and C. L. Huang, “Crystallization kinectics of LiNbO3-SiO2-Al2O3 glass,” J. Non-crystal. Solids, 278 (2000) 170-177.
17. S. Likitvanichkul and W. C. Lacourse, “Apatite-wollastonite glass-ceramics,” J. Mater. Sci., 33 (1998) 5901-5904.
18. C. R. Chang and J. H. Jean, “Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics,” J. Am. Ceram. Soc., 82 7 (1999) 1725-32.
19. O. P. Thakur, D. Kumar, O. Parkash and L. Pandey, “Effect of K2O addition on crystallization and microstructure behavior of the strontium titanate-borosilicate glass-ceramic system,” J. Mater. Lett., 23 (1995) 253-260.
20. Y. M. Sung, “Phase formation kinetic in SrO-Al2O3-SiO2-B2O3 glass,” J. Mater. Sci., 37 (2002) 699-703.
21. M. H. Lin and M. C. Wang, “Phase transformation and characterization of TiO2 and ZrO2 addtion in the LiO2-Al2O3-SiO2 gels,” J. Mater. Res., 11 [10] (1996) 2611-2615.
22. S. knickerbockers, M.R. Tuzzolo and Lawhorne, “Sinterable β-spodumene glass ceramic,” J. Am. Ceram. Soc., 72 (1989) 1873.
23. Y. M. Sung, “The effect of additives on the crystallization and sintering of 2MgO-2Al2O3-5SiO2 glass-ceramics,” J. Mater. Sci. 31 (1996) 5421-5427.
24. B. H. Kim and K. H. Lee, “Crystallization and sinterability of cordierite-based glass powders containing CeO2,” J. Mater. Sci., 29 (1994) 6592-6598.
25. J. H. Jean, C. R. C, S. C. L and S. L. Y, “Low-dielectric composition with controlled crystallization and thermal expansion,” Mater. Chem. And Phys. 46 (1996) 31-37.
26. J. A. Sampaio, T. Catunda, F. C. G. Gandra, S. Gama, A.C. Bento, L.C.M. Miranda and M. L. Baesso, “Structure and properties of water free Nd2O3 doped low silica calcium aluminate glasses,” J. Non-Crys. Solids., 247(1999) 196-202.
27. W. D. Kingery, H. K.Bowen and D. R. Uhlmann, Introduction to Ceramic, 2nded. John Wiley, New York (1976) Ch.18.
28. Y. M. Sung, “Crystallization characteristics of SrO-Al2O3-SiO2-B2O3 glass, ” J. Mater. Sci. lett., 20 (2001) 2235-2237.
29. Z. Strnad, Glass-ceramic materials, Elsevier science publishing compant, Inc. 52 Vanderbilt Avenue, N.Y. 79-181.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔