(3.238.174.50) 您好!臺灣時間:2021/04/18 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:程惟嵩
研究生(外文):Wei-Song Cheng
論文名稱:真三軸應力作用下花崗岩破裂面水力參數之研究
論文名稱(外文):A Study of the Hydraulic Behavior of Single Fracture in Granite Under Tri-Axial Stresses
指導教授:王建力王建力引用關係
指導教授(外文):Jian-Li Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:189
中文關鍵詞:三軸應力膨潤土立方律
外文關鍵詞:cubic law.BentoniteTri-Axial Stresses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0


  本研究利用自行發展的真三軸實驗設備,對含單一平行及傾斜破裂面之花崗岩立方試體進行透水性質之研究。研究中探討人工破裂面受不同圍壓應力作用下流量及水力內寬變化的情形、並利用修正立方律以求取岩體破裂面的透水係數,討論在不同應力控制下與破裂面透水係數的關係,及觀察施加膨潤土前後水力參數的變化行為。
在本研究設定之試驗條件下,所得結論如下:
1.平行破裂面試驗:
(1)應力增加時,覆蓋方向內寬變化量會增加,而透水方向內寬變形則有略減的現象;阻水方向當應力增加及減少時變化較為一致,且各週期的變形量變化也相當小。
(2)應力增加時,覆蓋及透水方向流量會有降低的現象,阻水方向有略為增加的現象;而透水係數在各方向的變化幅度皆不大。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。。
2.傾斜破裂面試驗:
(A)剪向應力控制之下
(1)視內寬變形量集中於實驗初始加壓階段,且不會隨剪向應力及加壓、減壓次數的增加而有大幅度的改變。
(2)反覆的加壓、減壓會導致破裂面間之接觸面積增加、流路減少,因此流量及透水係數也會隨之減少。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。
(B)正向應力控制之下
(1)視內寬變形量集中於各組之初始加壓階段,而且隨著加壓、減壓次數的增加,其視內寬變形量會增加。
(2)流量及透水係數會隨著正向應力及加壓、減壓次數的增加而減少。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。
3.平行與傾斜破裂面試驗之比較:
在四個相同應力路徑的情況下,本研究發現傾斜破裂面試驗所得之水力參數與平行破裂面試驗的結果略有差異,在多數情形下傾斜破裂面所測得之透水係數較大。



  This study attempts to measure the hydraulic properties of rock fracture under pressure conditions. Cubic samples of Granite with parallel or inclined fracture have been prepared for the laboratory investigation. The effect of Bentonite has been also studied. The apertures and flow rates under different paths of triaxial compressions were measured. The hydraulic properties were estimated through the modified cubic law. The findings of this study are as following:
1. Parallel fracture:
(1)Increase in overburden pressure increases apparent apertures of rock fracture. Increase in pressure on water flow path reduces apparent apertures of rock fracture. Lateral pressure seems to have little effect on apparent apertures of rock fracture.
(2)Increase in overburden pressure reduces fracture flow. Increase in pressure on water flow path slightly reduces fracture flow. Increase in lateral pressure slightly increases fracture flow.
(3)The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
2. Inclined fracture:
(A) Under the action of the shear-stress-control:
(1) The net change in deformation mainly occurs at the initial stage. The apparent aperture of rock fracture decreases as the normal stress increases.
(2) As the shear stress and the cyclic actions of loading/unloading increases, the amount of net change in flow rates and hydraulic conductivities decreases.
(3) The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
(B) Under the action of the normal-stress-control:
(1) The net change in apertures mainly occurs at the initial stage of each normal stress loading. The apparent aperture of rock fracture decreases as the normal stress and the cyclic actions of loading/unloading increases.
(2) As the normal stress and the cyclic actions of loading/unloading increases, the amount of net change in flow rates and hydraulic conductivities decreases.
(4)The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
3. Comparison of parallel and inclined rock fracture:
The hudraulic conductivities measured from the inclined rock fracture are higher than the ones from the parallel rock fracture.



中文摘要I
目錄III
表目錄V
圖目錄VII
第一章 緒論
1-1 研究動機與目的1
1-2 研究內容 2
第二章 前人研究與基本理論
2-1 前人研究 4
2-2 基本理論 21
第三章 研究設備與實驗步驟
3-1 研究設備 23
3-1-1 真三軸圍壓系統 26
3-1-2 流量及水壓控制儀 34
3-2 試體製備 35
3-2-1 花崗岩試體製備 35
3-2-2 人工剪力破裂面製作 36
3-2-3 防水處理 38
3-3 實驗步驟 39
3-3-1 實驗之圍壓組合 39
第四章 實驗結果與討論
4-1 材料之基本物理性質45
4-2 三軸應力與試體破裂面內寬關係47
4-3 剪向應力控制下,正向應力與視內寬變形量之關係52
4-4 正向應力控制下,剪向應力與視內寬變形量之關係55
4-5 三軸應力與試體破裂面流量關係57
4-6 剪向應力控制下,正向應力與流量之關係63
4-7 正向應力控制下,剪向應力與流量之關係65
4-8 迴歸分析68
4-9 三軸應力與試體破裂面透水係數關係76
4-10剪向應力控制下,正向應力與透水係數之關係77
4-11正向應力控制下,剪向應力與透水係數之關係78
4-12平行與傾斜破裂面試體實驗結果之比較79
第五章 結論與建議
5-1 結論 81
5-2 建議 84
參考文獻 85



1. Barton, N., Bandis, S. and Bakhtar, K., Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 22, No. 3, pp. 121∼140, 1985.
2. Bear, J., Dynamic of fluids in porous media, Elsevier, New York, pp. 132∼136, 1988.
3. Chen, Z., Narayan, S. P., Yang, Z. and Rahman, S. S., An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock, Int. J. Rock Mech. & Min. Sci., Vol. 37, pp. 1061∼1071, 2000.
4. Gale, J. E., A numerical, field and laboratory study of flow in rocks with deformable fractures, Ph. D. Thesis, University of California, Berkeley, 1975.
5. Gangi, A. F., Variation of whole and fractured porous rock permeability with confining pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 249∼257, 1978.
6. Gerald, C. F. and Wheatley, P. O., Applied numerical analysis, Addison Wesley Longman, Massachusetts, pp. 264∼268, 1999.
7. Iwai, K., Fundamental studies of fluid flow through a single fracture, Ph. D. Thesis, University of California, Berkeley, 1976.
8. Jones, F. O., A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks, J. Petrol. Technol., pp. 21∼27, 1975.
9. Kranz, R. L., Frankle, S. D., Engelder, T. and Scholz, C. H., The permeability of whole and jointed Barre granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 16, pp. 225∼234, 1979.

10. Lardner, T. J. and Archer R. R., Mechanics of solids, McGraw-Hill, New York, pp. 542∼545, 1994.
11. Makurat, A., Ahola, M., Khair, K., Noorishad, J., Rosengren, L. and Rutqvist, J., The DECOVALEX test-case one, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 32, No 5, pp. 399∼408, 1995.
12. Mott, R. L., Applied fluid mechanics, Maxwell Macmillan, New York, pp. 219∼229, 1994.
13. Munson, B. R., Young, D. F. and Okiishi, T. H., Fundamentals of fluid mechanics, John Wiley & Son, New York, pp. 853, 1998.
14. Tsang, Y. W. and Witherspoon, P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress, Journal of Geophysical Research, Vol. 86, No. B10, pp. 9287∼9298, 1981.
15. Walsh, J. B., Effects of pore pressure and confining pressure on fracture permeability, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 18, pp. 429∼435, 1981.
16. Witherspoon, P. A., Wang, J. S. Y., Iwai, K. and Gale, J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, pp. 1016∼1024, 1985.
17. Yeo, I. W., de Freitas, M. H. and Zimmerman, R. W., Effect of shear displacement on the aperture and permeability of a rock fracture, Int. J. Rock Mech. Min. Sci., Vol. 35, No 8, pp. 1051∼1070, 1998.
18. 王茂松,「真三軸應力作用下花崗岩破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,2000。
19. 李仁傑,「岩體人工破裂面之立方律適用性探討」, 國立成功大學資源工程研究所碩士論文,1996。
20. 林松興,「岩體破裂面在正應力下之水力參數探討」, 國立成功大學資源工程研究所碩士論文,1994。
21. 林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究:以坪林隧道為例」,中國土木水利工程學刊,第14卷,第3期,第429-439頁,2002。
22. 林宏奕、李振誥、莊文壽,「金門地區花崗岩體破裂面參數調查與透水係數推估」,大地工程學術研討會論文集,2003。
23. 黃吉皇,「正向與剪向應力對於花崗岩破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,2001。
24. 黃偉慶、葉佐仁、盧俊鼎,「放射性廢料處置場回填材料之工程性質」,核子科學,第38卷,第2期,第107-118頁,2001。
25. 陳建生、王媛、趙維炳,「鑽孔與岩體裂隙斜交滲流場井流理論與示蹤方法研究」,水利學報,第12期,第43-47頁,1999。
26. 陳榮華、葉義章、林宏奕、李振誥,「岩石單一裂隙之水力參數與傳輸參數探討」,岩盤工程研討會論文集,第533∼542頁,2000。
27. 鄭光宏,「真三軸應力作用下岩石人工剪力破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,1999。
28. 劉建宏、蔣立為、歐陽湘,「MODFLOW於裂隙岩體中地下水流模擬之應用」,台電工程月刊,第648期,第105-118頁,2002。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔