(3.234.221.162) 您好!臺灣時間:2021/04/14 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:武良文
研究生(外文):Liang-Wen Wu
論文名稱:氮化物發光二極體磊晶成長與元件特性研究
論文名稱(外文):Epitaxial Growth and Device Fabrication of Nitride Based Light Emitting Diodes
指導教授:蘇炎坤蘇炎坤引用關係張守進張守進引用關係
指導教授(外文):Yan-Kuin SuShoou-Jinn Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:159
中文關鍵詞:發光二極體多重量子井氮化鎵有機金屬化學氣相沈積法
外文關鍵詞:LEDMQWGaNMOCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討以有機金屬化學氣相磊晶法成長氮化物半導體,並利用氮化物研製藍光、綠光及白光發光二極體。關於研製氮化物藍光發光二極體的部分,我們將 Si 摻雜在多重量子井中並研究其影響。我們發現 Si 摻雜可以降低發光二極體的操作電壓並且提高發光亮度。此外,我們亦利用 Si 摻雜在 InGaN/GaN 超晶格結構於元件表面,以改善元件歐姆接觸特性。發現建立在此磊晶結構下的發光二極體元件,其操作電壓並不會隨 p 型 GaN 中 Mg 摻雜濃度而有太大改變。在綠光發光二極體部分,由於發光層磊晶成長溫度較低,為了改善在低溫成長多重量子井結構時造成磊晶特性衰退的問題,我們利用temperature ramping 的方式,將 GaN barrier layers 磊晶溫度由700 ℃提升至950 ℃,其結果發現確實可有效降低元件的操作電壓及提昇發光功率。此外,我們利用摻雜 Si 和 Zn 在 InGaN 發光層的方式,而非傳統的藍光搭配螢光粉的製程,成功製作出白光發光二極體。可以發現來自 D-A pair emission 其波長約介於500 nm與560 nm之間,與 InGaN band-edge related blue emission 搭配產生白光。針對亮度提昇的課題,在本論文中亦磊晶成長不同類型的 p 型接觸層,結果發現,在成長800 ℃的 p 型接觸層,由於 GaN 側向成長速率較慢,而使元件表面粗化,進而降低光被全反射的機率,有效的提昇發光亮度。此外,我們亦利用800 ℃成長 p-AlInGaN/GaN double cap layer 的方式解決元件可靠度的問題。
In this dissertation, the growth and characterization of blue, green and white InGaN/GaN multiple quantum well light emitting diodes have been studied by metalorganic chemical vapor phase deposition (MOCVD) technique. A detailed study on the effects of Si-doping in the GaN barrier layers of InGaN/GaN MQW LEDs has been performed. Compared with unintentionally doped samples, we suggest that one can significantly improve the performance of InGaN/GaN MQW LEDs by introducing Si doping in the GaN barrier layers. It was found that one could lower the LED operation voltage by introducing the SPS structure. The LED operation voltage is almost independent of the CP2Mg flow rate when we grow the underneath p-type GaN layer. High quality InGaN/GaN green LED structures were prepared by temperature ramping method during MOCVD growth. It was found that we could reduce the operation voltage and increase the output intensity of the nitride-based green LEDs by increasing the growth temperature of GaN barrier layers from 700 ℃ to 950 ℃. InGaN/GaN DH and MQW LEDs with Si and Zn co-doped active well layers were grown by MOCVD. It was found that we could observe a broad long-wavelength D-A pair related emission at 500 nm~560 nm. White light can thus be achieved by the combination of such a long-wavelength D-A pair emission with the InGaN band-edge related blue emission. In order to improve the luminous intensity, GaN-based LEDs with various p-cap layers were prepared. It was found that surface morphologies of the LEDs with 800 ℃-grown cap layers were rough due to the low lateral growth rate of GaN. Furthermore, we could achieve a higher output power and a longer lifetime by using the 800 ℃-grown p-AlInGaN/GaN double cap layer.
Abstract (in Chinese) … i
Abstract (in English) … ii
Acknowledge … iv
Contents … v
Table Captions … vii
Figure Captions … viii
CHAPTER 1 Introduction
1.1 Background … 1
CHAPTER 2 Metalorganic Chemical Vapor Deposition System
2.1 Introduction … 13
2.2 MOCVD Reactor … 15
2.3 In-Situ Reflectance Monitoring During III-Nitrides Growth … 17
CHAPTER 3 Optoelectronic Characterization of InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes
3.1 Si-Doped in GaN Barrier Layers of InGaN/GaN MQW Blue LEDs … 30
3.2 Si-Doped InGaN/GaN Short Period Superlattice Tunnelling Contact Layer of InGaN/GaN MQW Blue LEDs … 36
CHAPTER 4 Nitride-Based Green Light Emitting Diodes with High Temperature GaN Barrier Layers
4.1 Influence of Barrier Growth Temperature on the Properties of InGaN/GaN Multi-Quantum Wells … 61
4.2 Device Structure of InGaN/GaN Multi-Quantum Well Green Light Emitting Diodes … 63
4.3 Characterization of InGaN/GaN Multi-Quantum Well Green Light Emitting Diodes with High Temperature Barrier Layers … 65
4.4 High Output Intensities of Power Chips InGaN/GaN Multi -Quantum Well Green Light Emitting Diodes … 67
CHAPTER 5 Si and Zn Co-Doped InGaN/GaN Multiple Quantum Well White Light Emitting Diodes
5.1 General Introduction … 83
5.2 Device Fabrication of Si and Zn Co-Doped InGaN/GaN White Light Emitting Diodes … 85
5.3 Characterization of Si and Zn Co-Doped InGaN/GaN White Light Emitting Diodes … 87
CHAPTER 6 Lower Temperature p-GaN Cap Layer on InGaN/GaN Multiple Quantum Well Light Emitting Diodes
6.1 General Introduction … 110
6.2 Inductively Coupled Plasma Mesa Etched InGaN/GaN MQW LEDs Using Cl2/BCl3/Ar Plasma … 111
6.3 In0.23Ga0.77N/GaN MQW LEDs with a Low Temperature GaN Cap Layer … 115
6.4 Improved Performance of Surface Roughing In0.23Ga0.77N LEDs with p-type AlInGaN Cladding Layer … 121
CHAPTER 7 Conclusion … 152
Chapter 1
1. Y.-F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra,
Appl. Phys. Lett. 69, pp. 1438, 1996.
2. S. Guha, J.M. DePuydt, J. Qiu, G.E. Hofler, M.A. Haase, B.J. Wu, and H. Cheng,
Appl. Phys. Lett. 63, pp. 3023, 1993.
3. S. Guha, J.M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, Appl. Phys. Lett. 63,
pp. 3300, 1993.
4. Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi,
T. Niina, Jpn. J. Appl. Phys. Part 1 34, pp.1833, 1995.
5. J.D. Brown, J.T. Swindell, M.A.L. Johnson, Yu Zhonghai, J.F. Schetzina, G.E.
Bulman, K. Doverspike, S.T. Sheppard, T.W. Weeks, M. Leonard, H.S. Kong, H.
Dieringer, C. Carter, J.A. Edmond, Nitride Semiconduct or Symposium, Mat. Res.
Soc., pp. 1179-84, 1998.
6. S. Nakamura, M. Senoh, N. Iwasa, and S.-I.Nagahama, Appl. Phys. Lett. 67, pp. 1868, 1995.
7. S. Nakamura, J. Cryst. Growth 170, pp. 11, 1997.
8. Z.A. Munir, and A.W. Searcy, J. Chem. Phys. 42, pp. 4233, 1965.
9. N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, pp. 1242, 1993.
10. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, pp. 2390, 1993.
11. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L21,
1989.
12. S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald, Appl. Phys. Lett. 66, pp. 1249, 1996.
13. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N Sawaki, J. Cryst. Growth 98, pp. 209, 1989.
14. D.L. Barton, M. Osinski, C.J. Helms, N.H. Berg, B.S. Phillips, SPIE-Int. Soc. Opt.
Eng 2694, pp. 64, 1996.
15. A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan, I. Adesida, IEEE Electron Device
Letters 19, pp. 54, 1998.
16. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, pp.353, 1986.
17. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705, 1991.
18. A. Sakai, H. Sunakawa, and A. Usui, Jpn. J. Appl. Phys. Lett., Part 2 36, L899,
1997.
19. Akira Sakai, Harua Sunakawa, and Akira Usui, Appl. Phys. Lett. 71, pp. 2259 1997.
20. P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P.
Denbaars, and U.K. Mishra, Appl. Phys. Lett. 73, pp. 975, 1998.
21. J.T. Torvik, J.I. Pankove, E. Iliopoulos, H.M. Ng, and T.D. Moustakas, Appl. Phys. Lett. 72, pp. 244, 1998.
22. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H.
Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K Chocho, Appl. Phys.
Lett. 72, pp. 2014, 1998.
23. H. Okumura, S. Misawa, and S. Yoshida, Appl. Phys. Lett. 59, pp. 1058, 1991.
24. A. Kikuchi, H. Hoshi, and K. Kishino, Jpn. J. Appl. Phys. 33, pp. 688, 1994.
25. T. Lei, M. Fanciulli, R.J. Molnar, T.D. Moustakas, R.J. Graham, and J. Scanlon,
Appl. Phys. Lett. 58, pp. 944, 1991.
26. T.D. Moustakas, T. Lei, and R.J. Molnar, Physica B 185, pp. 36, 1993.
27. M.J. Paisley, Z. Sitar, J.B. Posthill, and R.F. Davis, J. Vac. Sci. Technol. A 7, pp. 701, 1989.
28. H. Liu, C. Frenkel, J.G. Kim, and R.M. Park, J. Appl. Phys. 74, pp. 6124, 1993.
29. R.C. Powell, G.A. Tomasch, Y.W. Kim, J.A. Thornton, and J.E. Greene, Mater. Res. Soc. Symp. 162, pp. 525, 1990.
30. S.A. Nikishin, N.N. Faleev, V.G. Antipov, S. Francoeur, L. Grave de Peralta, G.A.
Seryogin, H. Temkin, T.I. Prokofyeva, M. Holtz, and S.N.G. Chu, Appl. Phys. Lett.
75, pp. 2073, 1999.
31. Chuong A. Tran, A. Osinski, R.F. Karlicek, Jr., I Berishev, Appl. Phys. Lett. 75,
pp. 1494, 1999.
32. S. Sriram, G. Augustine, A. Burk, R. Glass, H. Hobogood, P. Orphanos, L. Rowland, T. Smith, C. Brandt, M. Driver, and R. Hopkins, IEEE Electron. Device Lett. 17, pp. 369, 1996.
33. E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films “, Appl. Phys. Lett., Vol. 70, pp. 461, 1997.
34. P. Bogulslawski, E.L. Briggs, and J. Bernholc, Phys. Rev. B 51, pp. 17255, 1995.
35. H. Amano M. Kito, K. Hiramatsu, and I Akasaki, Jpn. J. Appl. Phys. 28, L2112,
1989.
36. H. Amano, M. Kito, K. Hriamatsu, and I Akasaki, Inst. Phys. Conf. Ser. 106, pp. 725, 1989.
37. S. Nakamura, M Senoh, T. Mukai, Jpn. J. Appl. Phys. 30, L1708, 1991.
38. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 31,
L139, 1992.
39. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 31,
L1258, 1992.
40. J. I. Pankove and J.A. Hutchby, J. Appl. Phys. 24, pp. 281, 1974.
41. J. I. Pankove and J.A. Hutchby, J. Appl. Phys. 47, pp. 5387, 1974.
42. J. S. Chan, N.W. Cheung, L. Schloss, E. Jones, W.S. Wong, N. Newman, X. Liu,
E.R. Weber, A. Gassman, and M.D. Rubin, Appl. Phys. Lett. 68, pp. 2702, 1996.

Chapter 2
1.S. Nakamura, T. Muksi, and M. Senoh, Appl. Phys. Lett. 64, pp. 1687, 1994.
2.H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., 15, pp. 367, 1969.
3.H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc., Vol. 118, pp. 1864, 1971.
4.S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, J. Cryst. Growth. Vol. 77, pp. 188, 1986.
5.S. Nakamura, Y. Harada, M. Seno, Appl. Phys. Lett., 58, pp. 2021, 1991.
6.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., Vol. 48, pp. 353, 1986.
7.S. Nakamura, Jpn. J. Appl. Phys., Vol. 30, L1705, 1991.
8.X. H. Wu, D. Kapolnek, E. J. Tarsa, B. heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, 68, pp. 1371, 1996.
9.H. Amano, I. Akasak, K. Hiramatsu and N. Koide, Thin Solid Film, 163, pp. 415, 1988.
10.I. Akasak, H. Amano, N. Koide, K. Hiramatsu and N. Sawali, J. Cryst. Growth, 98, pp. 209, 1989.
11.S. Nakamura, Jpn. J. Appl. Phys., 30, pp. 1348, 1991.
12.S. L. Wright, T. N. Jackson, and R. F. Marks, J. Vac. Sci. & Technol. Vol. B8, pp. 288, 1990.
13.W. G. Breiland and K. P. Killeen, J. Appl. Phys., 78 (11), pp. 6726, 1995.

Chapter 3
1.S. Nakamura, M. Senoh, Iwasa, N. and S. Nagahama, Appl. Phys. Lett. 67, pp. 1868, 1995.
2.S. Ruvimov, Z. Liliental-Weber. T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, pp. 990, 1996.
3.E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, Appl. Phys. Lett, 71, pp. 921, 1996.
4.P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lamber, and R. D. Dupuis, Appl. Phys. Letts. 71, pp. 1537, 1997.
5.S. Keller, A. C. Abare, M. S. Misky, X.H. Wu, M. P. Mack, J. S. Speck, E. Hu, L. A. Coldren, U. K. Mishra, and S. P. BenBaars, Mater, Sci. Forum 264-268, 1998.
6.S. Bindnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J.Song, S. Keller, U. K. Mishra, and S. P. DenBarrs, Appl Phys. Letts. 72, pp. 1623, 1998.
7.S. Salvador, G. Liu, W. Kim, P. Aktas, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 67, pp. 3322, 1995.
8.K. C. Zeng, J. Y. Lin, H. X. Jiang, A. Salvador, G. Popovicic, H. Tang, W. Kim, H. Morkoc, Appl. Phys. Lett. 71, pp. 1368, 1997.
9.S. Ruvimov, Z. L. Weber, T. Suski, J. E. Ager III, J. Washbum, J. Krueger, C. Kisielowski, E. R.Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, pp. 990, 1996.
10.T. Deguchi, A. Shikanai, K. Torii, T. Sots, S. Chichibu, S. Nakamura, Appl. Phys. Lett. 72, pp. 3329, 1998.
11.D. A. Meller, D. S. Chemla, T. C. Damen, A. C. Gross, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, pp. 2173, 1981.
12.D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, Phys. Rev. B 33, pp. 6976 1986.
13.Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, Appl. Phys. Lett., 70, pp. 981, 1997.
14.S. Ruvimov, Z. L. Weber, T. Suski, J. E. Ager III, J. Washbum, J. Krueger, C. Kisielowski, E. R.Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, pp. 990, 1996.
15.T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095, June 2002.
16.L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, IEEE J. Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
17.C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 23, No. 5, pp. 240-242, May 2002.
18.C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, April 2002.
19.P. Kozodoy, M. Hansen, S. P. DenBaars and U. K. Mishra, Appl. Phys. Lett., Vol. 74, No. 24, pp. 3678- 3680, 1999.
20.I. D. Goepfert, E. F. Schubert, A. Osinsky, P. E. Norris and N. N. Faleev, J. Appl. Phys,, Vol. 88, No. 4, pp. 2030-2038, 2000.
21.I. D. Goepfert, E. F. Schubert, A. Osinsky and P. E. Norris, Electron. Lett., Vol. 35, No. 13, pp. 1109-1111, 1999.
22.K. Kumakura and N. Kobayashi, Jpn. J. Appl. Phys., Vol. 38, No, 9A/B, pp. L1012-L1014, November 1999.
23.K. Kumakura, T. Makimoto and N. Kobayashi, Jpn. J. Appl. Phys. Vol. 39, No, No. 4B, pp. ) 2428-2430, April 2000.
24.J. K. Sheu, G. C. Chi, and M. J. Jou, IEEE Electron Device Lett., Vol. 22, pp.160-162, 2001.
25.A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi and A. Hirata, Appl. Phys. Lett, Vol. 77, pp. 175-177, 2000.
26.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, Appl. Phys.Lett., vol.76, pp.24-22, 1999.
27.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp. 460-462, October 2001.
28.Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, I. C. Lin and C. H. Chen, Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3643-3645, June 2002.
29.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
30.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
31.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
32.C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
33.C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb and W. J. Lin, Jpn. J. Appl. Phys. Lett., Vol. 41, No. 3A, pp. L226-L228, March 2002.
34.J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, J. Appl. Phys., Vol. 91, No. 4, pp. 1845-1848, February 2002.
35.C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, Jpn. J. Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February 2002.
36.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, August 2001.
37.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
38.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
39.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2762-2764, April 2001.
40.S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, January 2001.
41.K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, J. Crystal Growth, Vol. 220, pp. 405-412, December 2000.
42.W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, Jpn. J. Appl. Phys. Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
43.G. S. Marlow and M. B. Das, Solid-State Electron, 25, pp. 91, 1982.

Chapter 4
1.S. Nakamura and G. Fasol, The Bule Laser Diode, Springer, Berlin, 1997.
2.S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys., Part2,Vol. 34, pp. L797-800 1995.
3.L. H. Ho and G. B. Stringfellow, Appl. Phys. Lett., Vol. 69, pp. 2701-2703, 1996.
4.M. Shimizu, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, Vol. 145, pp. 209-214, 1994.
5.S. Keller, B. Keller, D. Kapolnek, U. Mishra, S. DenBaars, I. Shmagin, R. Kolbas and S. Krishnankutty, J. Cryst. Growth, Vol. 170, pp. 349-354, 1997.
6.T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095, June 2002.
7.L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, IEEE J. Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
8.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
9.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
10.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
11.C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
12.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
13.S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, July/August 2002.
14.C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo and Y. C. Lin, IEEE Photo. Technol. Lett., Vol. 14, No. 7, pp. 908-910, July 2002.
15.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp. 460-462, October 2001.
16.T. C. Wen and W. I. Lee, Jpn. J. Appl. Phys., Vol. 40, pp. 5302-5303, 2001.
17.T. C. Wen, S. C. Lee and W. I. Lee, Proc. SPIE, Vol. 4278, pp. 141-144, 2001.
18.M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, Academic Press 1999.
19.Wierer JJ, Steigerwald DA, Krames MR, O’Shea JJ, Ludowise MJ, Christenson G, et al. Appl Phys Lett 78, pp. 3379–82, 2001.
20.Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, Appl. Phys. Lett., Vol. 70, pp. 981-983, 1997.

Chapter 5
1.S. Nakamura and G. Fasol, The blue laser diode, pp. 216-219, Springer, Berlin, 1997.
2.X. Guo, J. W. Graff and E. F. Schubert, IEDM Technology Digest, IEDM-99, pp.600-605, 1999.
3.F. Hide, P. Kozody, S. P. DenBaars and A. J. Heeger, Appl. Phys. Lett., vol.70, pp. 2664-2666, 1997.
4.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
5.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp. 460-462, 2001.
6.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, 2001.
7.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, 2001.
8.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, No. 4B, pp. 2996-2999, 2001.
9.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, 2001.
10.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, 2001.
11.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, No. 4B, pp. 2996-2999, 2001.
12.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, Jpn. J. Appl. Phys., Vol. 40, No. 4B, pp. 2762-2764, 2001.
13.S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, 2001.
14.K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, J. Crystal Growth, Vol. 220, pp. 405-412, 2000.
15.W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, Jpn. J. Appl. Phys. Lett., Vol. 39, No. 11B, pp. 1138-1140, 2000.
16.J. K. Sheu et al., Solid-State Electronics, Vol. 44, pp.1055-1058, 2000.
17.J. I. Pankove, Prentice-Hall, New Jersey, pp. 147-152, 1971.
18.S. Nakamura, T. Mukai, and M. Senoh, Vol.76, pp. 8189-8191, 1994.

Chapter 6
1.S. Nakamura, J. Crystal Growth 145, pp. 911, 1994.
2.S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, pp.1687. 1984.
3.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, Jpn. J. Appl. Phys, 34, pp. 797, 1995.
4.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, H. Kiyoko, Y. Sugimoto, Jpn. J. Appl. Phys. 35, pp. 74, 1996.
5.M. Akita, S. Kishimoto, and T. Mizutani, Member, IEEE Electron Device Lett., Vol. 22, No. 8, pp. 376-377, 2001.
6.Shuji Nakamura, Takashi Mukai, and Masayuki Senoh, Appl. Phys. Lett., March 28, Vol. 64, pp. 1687-1689, 1994.
7.R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, C. Barratt, IEEE Electronics Letters Vol. 32, pp. 1408-1409, 1996.
8. D. Basak, K. Yamashita, T. Sugahara, Q. Fareed, D. Nakagawa, K. Nishino and S. Sakai, Jpn. J. Appl. Phys. Vol.38, pp. 2646-265, 1999.
9.Y. B. Hahn, Y. H. Im, J. S. Park, K. S. Nahm, and Y. S. Lee, J. Vac. Sci. Technol. A 19, pp. 1277-1281, 2001.
10.S. Tripathy, A. Ramam, S. J. Chua, J. S. Pan, and Alfred Huan, J. Vac. Sci. Technol. A 19, pp. 2522-2532, 2001.
11. L. W. Wu, S. J. Chang, Y. K. Su,; R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, et. al. Solid-State Electronics Vol. 47, pp. 2027-2030, 2003.
12.S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys., Vol. 86, No.1, pp. 1-78, 1999.
13.Y. H. Lee, Y. J. Sung, G. Y. Yeom, J. W. Lee, and T. I. Kim, J. Vac.Sci.Technol. A 18, pp. 1390-1394, 2000.
14.S. Kitamura, K. Hiramatsu and N. Sawaki, Jpn. J. Appl. Phys. Vol. 34, pp. 1184, 1995.
15.H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards and R.W. Martin, IEEE Photon. Technol. Lett., Vol. 15, pp. 510-512, 2003.
16.S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, IEEE J. Quan. Electron., vol. 39, pp. 1439-1443, 2003.
17.A. M. Roskowski, P. Q. Miraglia, E. A. Preble, S. Einfeldt and R.F. Davis, J. Cryst. Growth, vol. 241, pp. 141-150, 2002.
18.C. Huh, S. W. Kim, H. S. Kim, H. M. Kim, H. Hwang and S. J. Park, Appl. Phys. Lett., vol. 78, pp. 1766-1768, 2001.
19.S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, IEEE Electron. Dev. Lett., Vol. 24, pp. 129-131, 2003.
20.R. S. Balmer, C. Pickering, A. J. Pidduck and T. Martin, J. Cryst. Growth, Vol. 245, pp. 198-206, 2002.
21.S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, IEEE Electron. Dev. Lett., Vol. 24, pp. 212-214, 2003.
22.S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748, 2002.
23.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283, 2002.
24.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 284-288, 2002.
25.S. Kitamura, K. Hiramatsu and N. Sawaki, Jpn. J. Appl. Phys., Vol. 34, pp. L1184-L1186, 1995.
26.D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour and L. Chernyak, Appl. Phys. Lett., Vol. 83, pp. 33-35, 2003.
27.S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parkeh, D. S. Lee, D. Lu, D. V. Christini, L. Liu and E. A. Armour, J. Appl. Phys., Vol. 94, pp. 1461-1467, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張明麗(民85)。幼教人員參與在職進修學習動機之研究。花蓮師院學報,6,273-319。
2. 孫春在(民84)。超媒體網路與遠距合作式電腦輔助學習。教學科技與媒體,21,pp29-37。
3. 韋金龍、陳玉美(民83):突破常態編班教學困境之途徑:合作學習。教育研究雙月刊,35,59-65。
4. 邱瓊慧、吳祥明(民89)。談遠距教師進修。資訊與教育,76,頁41-46。
5. 林奇賢(民86)。全球資訊網輔助學習系統─網際網路與國小教育。資訊與教育,58,pp2-9。
6. 王智玄(1989):新的學習策略---網路合作是學習知探討。資訊與教育雜誌,78,42-49。
7. 王家通(民83)。突破教師進修的瓶頸。載於台北市教師研習中心編印「教師天地」,第68期,23-27頁。
8. 丁志權(民86)。教師在職進修辦法與獎勵法評析。教師之友。38(1),P1-8。
9. 許榮富、黃芳裕(民84)。當今科學概念發展研究賦予科學學習的新意義。科學教育月刊,178期,頁2-13。
10. 陳年興、楊子青、賴宏仁(1997),以網際網路為基礎之學習環境。電腦學刊,9(2),16-32 頁。
11. 陳嘉彌(民86)。教師透過網路在職進修動機取向與其接受創新程度間之關係研究。教育研究資訊,5,45-62頁。
12. 黃富順(1997)。從大學成人教育的發展論我國師範學院推廣教育功能的發展。載於國立花蓮師範學院進修推廣部主編:進修推廣教育的挑戰與展望。台北 師大書苑。
13. 楊家興,1995,“情境教學理論與超媒體學習環境”。 教學科技與媒體,22期,頁40-48,8月。
14. 趙金祁、許榮富、黃芳裕(民84):建構論在科學教育研究的典範類型與應用(一)。科學教育月刊,180期,頁2-16。
15. 盧富美(民81):談合作學習及其教學流程。教師之友,33卷4期,3-8。
 
系統版面圖檔 系統版面圖檔