(3.237.20.246) 您好!臺灣時間:2021/04/15 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊安
研究生(外文):Chun-An Lin
論文名稱:發光二極體之能帶缺陷對輸出特性影響之研究
論文名稱(外文):The Influence of Defect for Output Characteristics in Light Emitting Diodes
指導教授:洪茂峰洪茂峰引用關係王永和王永和引用關係
指導教授(外文):Mau-Phon HoungYeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:能帶填充帶尾穿隧機制電激發光
外文關鍵詞:electroluminescencetail
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  發光二極體是藉由電子-電洞對在活性層復合,再將其多餘的能量以光子的型式放出,因此在論文中,藉由電性和光性的量測,來更了解及改進其特性。
  透過精密半導參數分析儀,所量得之電壓-電流特性曲線來分析其擴散電流及復合電流;再透過發光二極體元件測試機,所量得之發光強度-電流曲線來分析發光強度與電流之間的關係,還有以電激發光頻譜來研究其復合機制。
  我們藉由電性之量測,發現藍光二極體在低電流區域,有一種別於傳統擴散電流以及復合電流的電流成分存在,根據研究是透過缺陷的一種穿隧機制(Tunneling mechanism),在量測電激發光頻譜時,可以發現隨著電流的增加,放射波峰(Emission peak)會往短波長移動,這種現象是由於能帶填充(Band filling),這是由於注入的電洞藉由穿隧到空的受體雜質能帶及空的價帶帶尾(Valence band tails)。
  The main mechanism of LED is based on the electron-hole recombination in the active layer, and then the energy emitted by the form of photon. In this thesis we try to understand and improve the characteristics by both optical and electrical measurement.
  By the I-V curve obtained by HP4156, we analyze the diffusion and recombination current. By the L-I curve obtained by led tester, we analyze the relation between light output intensity and current, research the mechanism of recombination by electroluminescence spectra.
  By our experiment we can find that there is a current different from other conventional forms in low current injected blue light-emitting diodes, and it is believed as a tunneling mechanism due to defects. By electroluminescence spectra, the emission peak will shift to short wavelength with the increase of current. It is caused by the band filling, which means the holes tunnel to empty acceptor impurity band and valence band tails.
第一章緒論……………………………………………………………1
1-1 研究背景…………………………………………………………1
1-2 研究動機…………………………………………………………2

第二章原理……………………………………………………………4
2-1 理想的pn電流方程式-(Shockley equation)…………………4
2-1-1 開路時的pn接面二極體…………………………………4
2-1-2 順向偏壓時的pn接面二極體……………………………6
2-1-3 逆向偏壓時的pn接面二極體……………………………10
2-1-4 電壓-電流特性的非理想效應…………………………11
2-2 發光二極體的發光機制-自發輻射……………………………12
2-2-1 常用發光二極體材料……………………………………12
2-2-2 自發輻射的發光機制……………………………………12
2-3 無光輻射復合……………………………………………………15
2-4 p-n 接面的注入發光機制………………………………………17
2-5 自發輻射和電流…………………………………………………18
2-6 色度圖以及顏色純度……………………………………………19

第三章參數分析原理…………………………………………………21
3-1 電壓-電流特性參數的粹取……………………………………21
3-2 發光二極體電壓-電流模型……………………………………21
3-3 電壓-電流模型的驗證…………………………………………24

第四章實驗過程………………………………………………………25
4-1 發光二極體準備…………………………………………………25
4-2 量測儀器…………………………………………………………25
4-3 實驗流程…………………………………………………………26

第五章結果與討論……………………………………………………27
5-1 紅光二極體之探討………………………………………………27
5-2 藍光二極體之探討………………………………………………28

第六章結論……………………………………………………………32
參考文獻………………………………………………………………33
[1] W. Shockley, “Electrons and Holes in Semiconductors”, Van Nostrand,
Princeton, 1950.
[2] C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and
recombination in p-n-junctions and p-n-junction characteristics,” Proc.
IRE, Vol. 45, p. 1228, 1957.
[3] H. Norde, “A modified forward I-V plot for Schottky diodes with high
series resistance”, J. App. Phys. Vol. 50, NO. 7, pp. 5052-5053, 1979.
[4] K. Sato and Y. Yasumura, “Study of forward I-V plot for Schottky
diodes with high series resistance”, J. App. Phys. Vol. 58, NO. 9, pp.
3655-3657, 1985.
[5] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A systematic
approach to the measurement of ideality factor, series resistance, and
barrier height for Schottky diodes”, J. App. Phys. Vol. 72, NO. 10, pp.
4739-4742, 1992.
[6] T. Ishida and H. Ikoma, “Bias dependence of Schottky barrier height
in GaAs from internal photoemission and current-voltage
characteristics”, J. App. Phys. Vol. 74, NO. 6, pp. 3977-3982, 1993.
[7] K. Maeda, H. Ikoma, K. Sato, and T. Ishida, “Current-voltage
characteristics and interface state density of GaAs Schottky barrier”,
Appl. Phys. Lett. Vol. 62, pp. 2560-2562, 1993.
[8] V. Aubry and F. Meyer, “Schottky diodes with high series resistance:
Limitations of forward I-V methods”, J. App. Phys. Vol. 76, NO. 12,
pp. 7973-7984, 1994.
[9] D.D. Damljanovic, “Remodeling the p-n junction”, Circuits and
Devices Magazine, IEEE , Vol. 9 , Issue: 6 , Pages:35 – 37, Nov.
1993.
[10] M. Lyakas, R. Zaharia, and M. Eizenberg, ” Analysis of nonideal
Schottky and p-n junction diodes—Extraction of parameters from I–V
plots”, J. App. Phys. Vol. 78, NO. 9, pp. 5481-5489, 1995.
[11] Y. B. Acharya, and P.D. Vyavahare.; ” Remodeling light emitting
diode in low current region”, Electron Devices, IEEE Transactions
on , Vol. 45 , Issue: 7 , pp. 1426 – 1430, 1998.
[12] V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D.
Ritter, M. Orenstein, and A. Peer, “On the extraction of linear and
nonlinear physical parameters in nonideal diodes”, J. App. Phys. Vol.
85, No. 8, pp. 6873-6883, 1999.
[13] C. Cane, M. Lozano, I. Gracia, J. Santander, E. Lora-Tamayo, ”
An easy technique for determining diffusion and
generation-recombination components of the current of pn junctions
for better modelling”, Microelectronic Test Structures, 1993. ICMTS
1993. Proceedings of the 1993 International Conference on , 22-25 ,
Pages:167 – 170, 1993.
[14] D. A. Neamen, “Semiconductor Physics & Devices”, Second
Edition, McGraw-Hill, 1999.
[15] S. M. Sze, “Semiconductor Devices Physics and Technology”, 2/H’,
John Wiley & Sons, 2002.
[16] S. O. Kasap, “Optoelectronics and Photonics Principles and
Practices”, Prentice Hall, 2001.
[17] E. Fred Schubert, “Light-Emitting Diodes”, the Nuited Kingdom at
the University Press, 2003.
[18] 彭江得, ”光電子技術基礎”, 儒林圖書有限公司, 1993.
[19] M. Fukuda, “Optical Semiconductor Devices”, NTT
Opto-electronics Laboratories Kanagawa, Japan, 1999.
[20] 工業技術研究院產業經濟與資訊服務中心,”2000 光電工業綜
論”,2000.
[21] 陳中豪, 蔣培瑜, “光源色度量測原理”, 工業材料雜誌, 208 期,
2004.
[22] A. S. Grove, “Physics and Technology of Semiconductor Devices”,
New York, Wiley, p.p. 187. 1967.
[23] H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada,
“Dominance of tunneling current and band filling in InGaN/AlGaN
double heterostructure blue light-emitting diodes”, Appl. Phys. Lett.,
Vol. 68, pp. 2867-2869, 1996.
[24] I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the
electrical and optical characteristics of blue light-emitting diodes
based on III–V nitrides”, J. Appl. Phys., Vol. 81, pp. 2442-2444, 1997.
[25] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer,
and D. Walker, “Diffusion and tunneling currents in GaN/InGaN
multiple quantum well light-emitting diodes”, Electron Device Letters,
IEEE , Volume: 23 , Issue: 9 , Sept., Pages:535 – 537, 2002.
[26] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness
InGaN/AlGaN double-heterostructure blue-green-light-emitting
diodes”, J. Appl. Phys. Vol. 76, pp. 8189-8191, 1994.
[27] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald,
“High dislocation densities in high efficiency GaN-based
light-emitting diodes”, Appl. Phys. Lett. Vol. 66, pp. 1249-1251,
1995.
[28] P. Perlin, M. Osi ski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas,
and P. Sartori, “Low-temperature study of current and
electroluminescence in InGaN/AlGaN/GaN double-heterostructure
blue light-emitting diodes”, Appl. Phys. Lett., Vol. 69, pp. 1680-1682,
1996.
[29] H. C. Casey JR. , Donald J. Silversmith, “Radiative tunneling in
GaAs Abrupt Asymmetrical Junctions”, J. Appl. Phys. Vol. 40, 1969.
[30] L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J.
Redwing, ”The role of the tunneling component in the
current--voltage characteristics of metal-GaN Schottky diodes”, Appl.
Phys., Vol. 84, pp. 2099, 1998.
[31] H. C. Casey Jr. , R. Z. Bachrach, “Electroluminescent shifting-peak
spextra in GaAs with uniform excition”, J. Appl. Phys. Vol. 44, No. 6,
1973.
[32] O. Langerstedt, B. Monemar, and H.Gislason, “Properties of GaN
tunneling MIS light-emitting diodes”, J. Appl. Phys. Vol. 49, pp.2953
1978.
[33] A. Shintani and S. Minagawa, “Electric properties of GaN
light-emitting diodes”, J. Appl. Phys. Vol.48 , pp.1522, 1977.
[34] E. Pinkas, B. I. Miller, I. Hayashi, and P. W. Foy, “GaAs-AlXGa1-XAs
Double Heterostructure Laser-Effectof Doping on Lasing
Characteristics of GaAs”, J. Appl. Phys. Vol. 43, pp. 2827, 1972.
[35] G. B. Stringfellow, M. G. Craford, “High Brightness Light Emitting
Diodes”, Academic press, 1997.
[35] B. I. Miller, E. Pinkas, I. Hayashi, R. J. Capik, “Reproducible
Liquid-Phase-Epitaxial Growth of Double Heterostructure
GaAs-AlXGa1-XAs Laser Diodes”, J. Appl. Phys.Vol. 43,
pp.2817-2826, 1972.
[37] J. F. Womac, and R. H. Rediker, “The Graded-Gap
AlXGa1-XAs-GaAs Heterojunction”, Vol. 43, J. Appl. Phys.
pp.4129-4133, 1972.
[38] H. Kressel, J. V. Dunse, H. Nelson, and F. Z.
Hawrylo, ”Luminescence in silicon-Doped GaAs Grown by
Liquid-Phase Epitaxy”, J. Appl. Phys. Vol. 39, pp. 2006, 1968.
[39] N. E. Byer, “Electroluminescence in Amphoteric silicon-Doped
GaAs Diodes. Ll. Transient Response”, J. Appl. Phys. Pp. 1602-1607,
1970.
[40] K. L. Ashley, and Doerberk, “Investigation of Gallium Arsenide
Emission Diode Characteristics with Transistor Structures”, J. Appl.
Phys. Vol. 42, pp.4493-4499, 1971.
[41] M. llegems, R. Dingle, and R. A. Logan, “Luminescence of Zn- and
Cd-doped GaN”, J. Appl. Phys. Vol.43, pp. 3797-3800, 1972.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔