|
[1] Sze SM, High-speed semiconductor device, Wiley, New York, 1990. [2] Pearton SJ, Ren F, Hobson WS, Abernathy CR, Masaities RL, Chakrabarti UK, “Surface recombination on processed InGaP p-n junctions,” Appl. Phys. Lett. , vol. 63, pp. 3610-3612, 1993. [3] Mooney PM, “Deep donor levels (DX centers) in III-V semiconductors,” J. Appl. Phys., vol. 67, R1-R24, 1990. [4] Plana R., Graffeuil J., Delage S. L., Blanck H., Di Fortepoisson MA, Brylinski C., “Low frequency noise in self-aligned GaInP/GaAs heterojunction bipolar transistor.” Electronics Letters, vol. 28, pp. 2354-2355, 1992. [5] Lothian JR, Kuo JM, Ren F, Pearton SJ., “Plasma and wet chemical etching of InGaP,” Journal of electronic materials, vol. 21, pp. 441-445, 1992. [6] G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd Edition, Academic Press, San Diego, 1999. [7] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000. [8] H F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers,” Electron. Lett., vol.37, pp.957-958, 2001. [9] I C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, J. Malmquist, “1260 nm InGaAs vertical-cavity lasers,” Electron. Lett., vol.38, pp.635-636, 2002. [10] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997. [11] F G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers,” Jpn. J. Appl. Phys., vol.41, part1, No.2B, pp.1040-1042, 2002. [12] G C. Asplund, P. Sundgren, M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications,” Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, pp. 619-621, 2002. [13] W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle and M. Deicher, “The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT,” J. Cryst. Growth, vol.170, pp.287-291, 1997. [14] A.C. Jones, “Metalorganic precursors for vapour phase epitaxy,” J. Cryst. Growth, vol.129, pp.728-773, 1993. [15] C C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, pp. 437-440, 1999. [16] C. D. Motchenbacher and F. C. Fitchen, “Low-Noise Electronic Design”, New York: Wiley, p.66, 1973. [17] R. J. Welty, H. P. Xin, K. Mochizuki, C. W. Tu, P. M. Asbeck, “GaAs/Ga0.89In0.11N0.02As0.98/GaAs NpN double heterojunction bipolar transistor with low turn-on voltage”, Solid-State Electronics, vol. 46, pp.1-5, 2002. [18] W.Shan, W. Walukiewicz, J. W.Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999). [19] A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, “Effect of nitrogen on the temperature dependence of the energy gap in InxGa1-xAs1-yNy/GaAs single quantum wells, Physical Review B, vol. 63, 195320 (2001). [20] I. Suemune, K. Uesugi, W. Walukiewicz, Applied Phyics Letters, vol. 77, pp. 3021-3023, 2000. [21] A. Nagy, M. Hundhausen, L. ley, G. Brunst, and E. Holzenkampfer, Phys. Rev. B 52, 11289 (1995). [22] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Kats, Phys. Rev. B 75, 2271 (1998). [23] I. Lo, K. Y. Hsieh, S. L. Hwang, L. W. Tu, W. C. Mitchel, and A. W. Sazler, Appl. Phys. Lett. 74, 2167 (1999). [24] J. R. Hayes, F. Capasso, R.J. Malik, A. C. Gossard, and W. Wiegmann, “Optimum emitter grading for heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 43, no. 10, pp. 949-951, 1983. [25] S. C. Lee, J. N. Kau, and H. H. Liu, “Origin of high-offset voltage in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 45, no. 10, pp. 1114-1116, 1984. [26] I. Getreu, Modeling the Bipolar Transistor. Amsterdam, The Nether-lands: Elsevier, 1978, p. 18. [27] R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi and C. Tu: J. Cryst. Growth 195, No. 1-4, 427, 1998. [28] F. Hohnsdorf, J. Koch, C. Agert and W. Stolz: J. Cryst. Growth 195, No. 1-4, 391, 1998. [29] F. Hohnsdorf, J. Koch, A. Hasse, K. Volz, A. Schaper, W. Stolz, C. Giannini and L. Tapfer: Physica E 8, No. 3, 205, 2000. [30] H. P. Xin, C. W. Tu and M. Geva: Appl. Phys. Lett., 75, No. 10, 1416, 1999. [31] D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson and R. Reedy: J. Cryst. Growth 195, No. 1-4, 438, 1998. [32] C. Y. Chen, J. Bayruns, R. J. Bayruns, and N. Scheinberg, “Reduction of low-frequency noise in a DC-2.4 GHz GaAs amplifier,” in GaAs IC Symp. Dig., p. 289, 1988. [33] H. J. Siweris and B. Schiek, “Analysis of noise upconversion in microwave FET oscillators,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, p.233, 1985. [34] Domian Costa, Marcel N. Tutt, “Tradeoff between 1/f noise and microwave performance in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp.1347-1350, 1994. [35] Jin-Ho Shin, Jiyoung Kim, “Low 1/f noise characteristics of AlGaAs/GaAs heterojunction bipolar transistor with wlwctrically abrupt emitter-base junction,” IEEE Electron Device Letters, vol. 18, pp. 60-62, 1997. [36] Sandip Tiwari, D. J. Frank, “Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors,” J. Appl. Phys, vol. 64, pp.10, 1988. [37] Abernathy C R, Ren F, Wisk P W, Pearton S J and Esagui R, “Improved performance of carbon-doped GaAs base heterojunction bipolar transistors through the use of InGaP,” Appl. Phys. Lett., vol.61, pp.1092., 1992. [38] Beam E A III, Chau H F, Henderson T S, Liu W and Seabaugh A C, J. Crystal Growth 136 1, 1994. [39] Kren D E, Rezazadeh A A, Rees P K and Tothill J N, “High C-doped base InGaP/GaAs HBTs with improved characteristics grown by MOCVD,” Electron. Lett., vol. 29, pp.961, 1993. [40] Leier H, Marten A, Bachem K-H, Pletschen W and Tasker P, “High speed selfaligned GaInP/GaAs HBBTs,” Electron. Lett., vol. 29, pp. 868, 1993. [41] Munoz E, Callja E, Izpura I, Garcia F, Romero A L, Sanchez-Rojas J L, Powell A L and Castagne J, “Techniques to minimize DX center deleterious effects in III-V device performance,” J. Appl. Phys., vol. 73, pp. 4988, 1993. [42] A. van der Ziel, “Formulator of surface 1/f noise process in bipolar junction transistors and in p-n diodes in Hooge-type form,” Solid-State Electron., vol.32, pp. 91-93, 1989. [43] Yoshifumi Takanashi, Hideki Fukano, “Low-frequency noise of InP-InGaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, pp.2400-2406, 1998. [44] H. A. W. Markus and T. G. M. Kleinpenning, “Low-frequency noise in polysilicon emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 720-727, 1995. [45] Bowler, D. L., and F. A. Lindholm, High Current Regimes in Transistor Collector Region, IEEE, Trans. Electron Devices, Vol. ED-20, p. 257, 1973. [46] Kirk, Jr., C. T., A Theory of Transistor Cutoff Frequency Falloff at High Current Densities, IEEE Trans. Vol. Ed-9, p. 164, 1962.
|