|
[1] R. Lippmann, “An introduction to computing with neural nets,” IEEE Acoust., Speech, Signal Processing Mag.,, vol. 4, no. 2, pp. 4-22, Apr. 1987. [2] J. Lazzaro, R. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-take-all networks of O(N) complexity,” Advances in Neural Inform. Processing Syst., vol. 1, pp. 703-711, 1989. [3] J. P. Fitch, E. J. Coyle, and N. C. Gallagher, “The analog median filter,” IEEE Trans. Circuit Syst., vol. 33, no. 1, pp. 94-102, Jan. 1986. [4] J. S. J. Li and W. H. Holmes, “Analog implementation of median filters for real-time signal processing,” IEEE Trans. Circuit Syst., vol. 35, no. 8, pp. 1032-1033, Aug. 1988. [5] B. D. Liu, C. S. Tsay, C. H. Chen, E. H. Lu, and C. S. Laih, “An analog median filter with linear complexity for real-time processing,” in Proc. IEEE Int. Symp. Circuits Syst., 1991, pp. 2565-2568. [6] J. S. J. Li and W. H. Holmes, “Analog implementation of median filters for real-time signal processing,” IEEE Trans. Consumer Electron., vol. 39, no. 1, pp. 25-32, Feb. 1993. [7] T. Jarske and O. Vainio, “A review of median filter systems for analog signal processing,” Analog Integr. Circuits Signal Process. 3, pp. 127-135, 1993. [8] I. E. Opris and G. T. A. Kovacs, “Analogue median circuit,” Electron. Lett., vol. 30, no. 17, pp. 1369-1370, Aug. 1994. [9] C. K. Tse and K. C. Chun, “Design of a switched-current median filter,” IEEE Trans. Circuit Syst. II, vol. 42, no. 5, pp. 356-359, May 1995. [10] S. Vlassis and S. Siskos, “CMOS analogue median circuit,” Electron. Lett., vol. 35, no. 13, pp. 1038-1040, June 1999. [11] M. Sasaki, T. Inoue, Y. Shirai, and F. Ueno, “Fuzzy multiple-input maximum and minimum circuits in current mode and their analyses using bounded-difference equations,” IEEE Trans. Comput. 39(6), pp. 768-774, 1990. [12] C. Y. Huang and B. D. Liu, “Current-mode multiple input maximum circuit for fuzzy logic controllers,” Electron. Lett., vol. 30, no. 23, pp. 1924-1925, Nov. 1994. [13] C. Y. Huang, C. J. Wang, and B. D. Liu, “Modular current-mode multiple minimum circuit for fuzzy logic controllers,” in Proc. IEEE Int. Symp. Circuits Syst., 1996, pp. 361-363. [14] S. I. Liu, P. Chen, C. Y. Chen, and J. G. Hwu, “Analog maximum, median and minimum circuit,” in Proc. IEEE Int. Symp. Circuits Syst., 1997, pp. 257-260. [15] I. E. Opris, “Rail-to-rail multiple-input min/max circuit,” IEEE Trans. Circuit Syst. II, vol. 45, no. 1, pp. 137-141, Jan. 1998. [16] S. Siskos, S. Vlassis, and I. Pitas, “Analog implementation of fast min/max filtering,” IEEE Trans. Circuit Syst. II, vol. 45, no. 7, pp. 913-918, July 1998. [17] R. Perfetti, “Winner-take-all circuit for neurocomputing applications,” IEE Proc.-Circuits Devices and Syst., vol. 137, no. 5, pp. 353-359, Oct. 1990. [18] B. Hochet, V. Peiris, S. Abdo, and M. J. Declercq, “Implementation of a learning Kohonen neuron based on a multilevel storage technique,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 262-267, March 1991. [19] L. G. Johnson, S. M. S. Jalaleddine, “MOS implementation of winner-take-all network with application to content-addressable memory,” Electron. Lett., vol. 27, no. 11, pp. 957-958, May 1991. [20] A. Cichocki and R. Unbehauen, “Winner-take-all neural network and its application to minimax optimization problems,” Electron. Lett., vol. 27, no. 22, pp. 2026-2028, Oct. 1991. [21] W.-C. Fang, B. J. Sheu, O. T.-C. Chen, and J. Choi, “A VLSI neural processor for data compression using self-organizatiion networks,” IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 506-517, May 1992. [22] M. E. Robinson, H. Yoneda, and E. Sanchez-Sinencio, “A modular CMOS design of a Hamming network,” IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 444-455, May 1992. [23] U. Cilingiroglu, “A charge-based neural Hamming classifier,” IEEE J. Solid-State Circuits, vol. 28, no. 1, pp. 59-67, Jan. 1993. [24] T. Yamashita, T. Shibata, and T. Ohmi, “Neuron MOS winner-take-all circuit and its application to associative memory,” in 1993 ISSCC Dig. Tech. Papers, Feb. 1993, pp. 236-237. [25] Y. He, U. Cilingiroglu, and E. S. Sinencio, “A high-density and low-power charge-based Hamming network,” IEEE Trans. VLSI Syst., vol. 1, no. 1, pp. 56-62, March 1993. [26] J. Choi and B. J. Sheu, “A high-precision VLSI winner-take-all circuit for self-organizing neural networks,” IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 576-583, May 1993. [27] Y. He and U. Cilingiroglu, “A charge-based on-chip adaptation Kohonen neural network,” IEEE Trans. Neural Networks, vol. 4, no. 3, pp. 462-469, May 1993. [28] D. Grant, J. Taylor, and P. Houselander, “Design, implementation and evaluation of a high-speed integrated Hamming neural classifier,” IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1154-1157, Sep. 1994. [29] W. W. Moses, E. Beuville, and M. H. Ho, ”A winner-take-all IC for determining the crystal of interaction in PET detectors,” IEEE Trans. Nucl. Sci., vol. 43, no. 3, pp. 1615-1618, June 1996. [30] R. Coultrip, “A CMOS binary pattern classifier based on Parzen method,” IEEE Trans. Neural Networks, vol. 9, no. 1, pp. 2-10, Jan. 1998. [31] J. A. Starzyk and X. Fang, “CMOS current mode winner-take-all circuit with both excitatory and inhibitory feedback,” Electron. Lett., vol. 29, no. 10, pp. 908-910, May 1993. [32] Y. He and E. Sanchez-Sinencio, “Min-net winner-take-all CMOS implementation,” Electron. Lett., vol. 29, no. 14, pp. 1237-1239, July 1993. [33] T. Serrano and B. L. Barranco, “A modular current-mode high-precision winner-take-all circuit,” IEEE Trans. Circuit Syst.-II, vol. 42, no. 2, pp. 132-134, Feb. 1995. [34] V. A. Pedroni, “Neural n-port voltage comparator network,” Electron. Lett., vol. 30, no. 21, pp. 1774-1775, Oct. 1994. [35] V. A. Pedroni, “Inhibitory mechanism analysis of complexity O(N) MOS winner-take-all networks,” IEEE Trans. Circuit Syst.-I, vol. 42, no. 3, pp. 172-175, March 1995. [36] S. Smedley, J. Taylor, and M. Wilby, “A scalable high-speed current-mode winner-take-all network for VLSI neural applications,” IEEE Trans. Circuit Syst. I, vol. 42, no. 5, pp. 289-291, May 1995. [37] S. P. Deweerth and T. G. Morris, “CMOS current mode winner-take-all circuit with distributed hysteresis,” Electron. Lett., vol. 31, no. 13, pp. 1051-1053, June 1995. [38] J. S. Kane and T. G. Kincaid, “Optoelectronic winner-take-all VLSI shunting neural network,” IEEE Trans. Neural Networks, vol. 6, no. 5, pp. 1275-1279, Sept. 1995. [39] H. Chaoui, “CMOS multiple input voltage winner takes all circuit,” Electron. Lett., vol. 31, no. 22, pp. 1915-1916, Oct. 1995. [40] T. S. Gotarredona and B. L. Barranco, “A high-precision current-mode WTA-MAX circuit with multichip capability,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 280-286, Feb. 1998. [41] A. Demosthenous, S. Smedley, and J. Taylor, “A CMOS analog winner-take-all network for large-scale applications,” IEEE Trans. Circuit Syst.-I, vol. 45, no. 3, pp. 300-304, March 1998. [42] D. Y. Aksn, “A High-precision high-resolution WTA-MAX circuit of O(N) complexity,” IEEE Trans. Circuit Syst. II, vol. 49, no. 1, pp. 48-53, Jan. 2002. [43] B. Sekerkiran and U. Cilingiroglu, “Improving the resolution of Lazzaro winner-take-all circuit,” in Proc. IEEE Int. Conf. Neural Networks, 1997, pp. 1005-1008. [44] B. Sekerkiran and U. Cilingiroglu, “A high resolution CMOS winner-take-all circuit,” in Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 2023-2026. [45] R. Perfetti, “On the robust design of k-winners-take-all networks,” IEEE Trans. Circuit Syst. II, vol. 42, no. 1, pp. 55-58, Jan. 1995. [46] K. Urahama and T. Nagao, “K-winners-take-all circuit with O(N) complexity,” IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 776-778, May 1995. [47] J.-F. Yang and C.-M. Chen, “A dynamic K-winners-take-all neural network,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 3, pp. 523-526, June 1997. [48] T.-C. Hsu and S.-D. Wang, “k-winners-take-all neural net with O(1) time complexity,” IEEE Trans. Neural Networks, vol. 8, no. 6, pp. 1557-1561, Nov. 1997. [49] B. Sekerkiran and U. Cilingiroglu, “A CMOS K-winners-take-all circuit with O(N) complexity,” IEEE Trans. Circuit Syst. II, vol. 46, no. 1, pp. 1-4, Jan. 1999. [50] S. Paul and K. Huper, “Analog rank filtering,” IEEE Trans. Circuits Syst. I, vol. 40, no. 7, pp. 469–475, July 1993. [51] S. Paul and K. Huper, “An analog circuit for eigenvalue calculation and rank filtering,” IEEE Trans Circuits Syst. I, vol. 41, no. 11, pp. 36–40, Nov. 1994. [52] K. Urahama and T. Nagao, “Direct analog rank filtering,” IEEE Trans Circuits Syst. I, vol. 42, no. 7, pp. 385–388, July 1995. [53] I. Opris, “Analog rank extractors,” IEEE Trans Circuits Syst. I, vol. 44, no. 12, pp. 1114–1121, Dec. 1997. [54] T. L. E. Dake and U. Cilingiroglu, “Rank-order filter using multiple-winners-take-all,” in Proc. IEEE 43rd Midwest Symp. on Circuits and Systems, 2000, pp. 482-485. [55] B. P. Tan and D. M. Wilson, “Semiparallel rank order filtering in analog VLSI,” IEEE Trans. Circuit Syst. II, vol. 48, no. 2, pp. 198-205, Feb. 2001. [56] U. Cilingiroglu, “A sampled-analog rank-order-filter architecture,” in Proc. IEEE 8th Int. Conf. on Electronics, Circuits, and Systems, 2001, pp. 173-176. [57] S. Siskos, S. Vlassis, and I. Pitas, “Analog implementation of an order-statistics filter,” IEEE Trans. Circuit Syst. I, vol. 46, no. 10, pp. 1296-1300, Oct. 1999. [58] G. Fikos, S. Vlassis, and S. Siskos, “High-speed, accurate analogue CMOS rank filter,” Electron. Lett., vol. 36, no. 7, pp. 593-594, March 2000. [59] Semiconductor Industry Association. (2002). International technology roadmap for semiconductors 2002 update. [Online]. Available: http://public.itrs.net/. [60] Y. C. Hung and B. D. Liu, “A self-feedback high-speed CMOS loser-takes-all circuit for vector-quantizer application,” presented at the International Symposium on communications, 2001, pp. 148. [61] Y. C. Hung and B. D. Liu, “A scalable high-precision CMOS max/min circuit using single comparator,” in Proc. IEEE 1st AP-ASIC’99, 1999, pp. 206-209. [62] J. L. Mccreary and J. B. Hunt, “An NMOS comparator for a bubble memory,” IEEE J. Solid-State Circuits, vol. 16, no. 6, pp. 689-694, Dec. 1981. [63] D. J. Allstot, “A precision variable-supply CMOS comparator,” IEEE J. Solid-State Circuits, vol. 17, no. 6, pp. 1080-1087, Dec. 1982. [64] B. J. Mccarroll, C. G. Sodini and H.-S. Lee, “A high-speed CMOS comparator for use in an ADC,” IEEE J. Solid-State Circuits, vol. 23, no. 1, pp. 159-165, Feb. 1988. [65] M. Steyaert and V. Comino, “High-speed accurate CMOS comparator,” Electron. Lett., vol. 24, no. 16, pp. 1027-1028, Aug. 1988. [66] J.-T. Wu and B. A. Wooley, “A 100-MHz pipelined CMOS comparator,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1379-1385, Dec. 1988. [67] G. M. Yin, F. O. Eynde and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992. [68] J. H. Atherton and H. T. Simmonds, “An offset reduction technique for use with CMOS integrated comparators and amplifiers,” IEEE J. Solid-State Circuits, vol. 27, no. 8, pp. 1168-1175, Aug. 1992. [69] O. B. Laug, T. M. Souders, and D. R. Flach, “A custom integrated circuit comparator for high-performance sampling applications,” IEEE Trans. Instrum. Meas., vol. 41, no. 6, pp. 850-855, Dec. 1992. [70] M. Bruccoleri and P. Cusinato, “Offset reduction technique for use with high speed CMOS comparators,” Electron. Lett., vol. 32, no. 13, pp. 1193-1194, June 1996. [71] T. Shih, L. Der, S. H. Lewis and P. J. Hurst, “A fully differential comparator using a switched-capacitor differencing circuit with common-mode rejection,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 250-253, Feb. 1997. [72] K. Kotani, T. Shibata and T. Ohmi, “CMOS charge-transfer preamplifier for offset-fluctuation cancellation in low-power A/D converters,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 762-769, May 1998. [73] A. Boni, G. Chiorboli and C. Morandi, “Dynamic characterization of high-speed latching comparators,” Electron. Lett., vol. 36, no. 5, pp. 402-403, March 2000. [74] S. Hosotani, T. Miki, A. Maeda, and N. Yazawa, “An 8-bit 20-MS/s CMOS A/D converter with 50-mW power consumption,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 167-172, Feb. 1990. [75] J. Yuan, C. Stensson, “High - speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-69, Feb. 1989. [76] Y. C. Hung and B. D. Liu, “A generalized high-precision analog CMOS rank finder for max/min/med application,” in Proc. IEEE 8th Int. Conf. Fuzzy Syst., 1999, pp. 1680-1684. [77] Y. C. Hung and B. D. Liu, “A 1.2-V rail-to-rail analog CMOS rank filter,” in Proc. Int. Analog VLSI Workshop, 1999, pp. 129-134. [78] Y. C. Hung and B. D. Liu, “A 1-V low power rail-to-rail analog CMOS multi-function filter with configurable capability,” in Proc. IEEE 2nd AP-ASIC’00, 2000, pp. 115-118. [79] Y. C. Hung and B. D. Liu, “A 1.2-V rail-to-rail analog CMOS rank-order filter with k-WTA capability,” Analog Integr. Circuits Signal Process., vol. 32, no. 3, pp. 219-230, Sept. 2002. [80] F. Maloberti, F. Francesconi, P. Malcovati, and O. J. A. P. Nys, “Design considerations on low-voltage low-power data converters,” IEEE Trans. Circuit Syst. I, vol. 42, no. 11, pp. 853-863, Nov. 1995. [81] W. Sansen, M. Steyaert, V. Peluso, and E. Peeters, “Toward sub 1V analog integrated circuits in submicron standard CMOS technologies,” in ISSCC Dig. Tech. Papers, Feb. 1998, pp. 186-187. [82] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999. [83] M. Waltari and K. A. I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129-134, Jan. 2001. [84] J. Terada, Y. Matsuya, F. Morisawa, and Y. Kado, “8-mW, 1-V, 100-MSPS, 6-bit A/D converter using transconductance latched comparator,” in Proc. IEEE 2nd AP-ASIC’2000, 2000, pp. 53-56. [85] A. Yukawa, “A CMOS 8-bit high-speed A/D converter IC,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 775-779, June 1985. [86] C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18-mm CMOS technology,” in Proc. ISCAS, 2001, pp. 460-463. [87] P. Rombouts, W. D. Wilde, and L. Weyten, “A 13.5-b 1.2-V micropower extended counting A/D converter,” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 176-183, Feb. 2001. [88] B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992. [89] P. Cusinato, M. Bruccoleri, D. D. Caviglia, and M. Valle, “Analysis of the behavior of a dynamic latch comparator,” IEEE Trans. Circuit Syst. I, vol. 45, no. 3, pp. 294-298, March 1998. [90] Y. C. Hung and B. D. Liu, “A 1-V CMOS analog comparator using auto-zero and complementary differential-input technique,” in Proc. IEEE 3rd AP-ASIC’02, 2002, pp. 181-184. [91] Y. Nakagome, H. Tanaka, K. Takeuchi, E. Kume, Y. Watanabe, T. Kaga, Y. Kawamoto, F. Murai, R. Izawa, D. Hisamoto, T. Kisu, T. Nishida, E. Takeda, and K. Itoh, “An experimental 1.5-V 64-Mb DRAM,” IEEE J. Solid-State Circuits, vol. 26, pp. 465-472, Apr. 1991. [92] M. Dessouky and A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 349-355, March 2001. [93] J. Crols and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936-942, Aug. 1994. [94] Y. C. Hung and B. D. Liu, “Design techniques of low-voltage low-power analog CMOS signal processing circuit for fuzzy controller and neural network,” in Proc. Int. Analog VLSI Workshop, 2001, pp. 19-24. [95] Y. C. Hung and B. D. Liu, “1-V CMOS comparator for programmable analog rank-order extractor,” IEEE Trans. Circuit Syst. I, vol. 50, no. 5, pp. 673-677, May 2003. [96] Y. C. Hung and B. D. Liu, “An analog CMOS rank-order extractor with O(N) complexity using maximum/winner-take-all circuit,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems, vol. 2, 2002, pp. 389-394. [97] Y. C. Hung and B. D. Liu, “An analog CMOS rank-order extractor with O(N) complexity using maximum/winner-take-all Circuit,” IEICE Trans. Electron., vol. E86-C, no. 8, pp. 1765-1773, Aug. 2003. [98] Y. C. Hung and B. D. Liu, “A high-precision self-adaptive analog CMOS current-mode maximum/minimum circuit with O(N) complexity for rank-order extractor,” in Proc. Int. Analog VLSI Workshop, 2001, pp. 1-6. [99] J. Williams, “Current source alternatives increase design flexibility,” EDN, pp. 169-174, Sept. 1982. [100] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989. [101] K. Okada, H. Onodera, and K. Tamaru, “Layout dependent matching analysis of CMOS circuits,” IEICE Trans. Fundamentals, vol. E82-A, no. 2, pp. 348-355, Feb. 1999. [102] Y. C. Hung and B. D. Liu, “1-V rail-to-rail analog CMOS programmable winner-take-all system with two-side searching capability,” in Proc. 14th VLSI Design/ CAD Symposium, 2003, pp. 41-44. [103] Y. C. Hung and B. D. Liu, “A CMOS vector quantizer for pattern recognition,” in Proc. IEEE 1st AP-ASIC’99, 1999, pp. 112-115. [104] Y. C. Hung and B. D. Liu, “Low-voltage low-power CMOS similarity measurement chip for binary pattern identification,” in Proc. 14th VLSI Design/ CAD Symposium, 2003, pp. 333-336.
|