(3.227.235.183) 您好!臺灣時間:2021/04/17 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪玉城
研究生(外文):Yu-Cherng Hung
論文名稱:互補金氧半類比階級處理電路設計與實現
論文名稱(外文):Design and Implementation of CMOS Analog Rank-Order Processing Circuits
指導教授:劉濱達
指導教授(外文):Bin-Da Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:126
中文關鍵詞:低電壓電路設計信號階級處理電路輸者通吃贏者通吃
外文關鍵詞:LTALow-Voltage Circuit DesignWTASignal Rank-Order Processing Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究應用於類神經網路圖形辨識、訊號準位排序、及模糊控制器的類比式階級處理電路。訊號階級處理電路包括最小值、最大值、中間值、贏者通吃、輸者通吃、多元贏者通吃、及任一階級之過濾辨識等。最小值或最大值的類比輸出可藉由一組類比開關從贏者通吃或輸者通吃的數位狀態輸出得到。
首先就現有傳統的贏者/輸者通吃電路架構作歸類與分析,探討其電路實現上之限制。我們利用自我回授機制加快電路的操作速度,設計出一個快速的輸者通吃電路。運作在8.3 MHz速度下,平均有15 mV 的辨識能力。並且突破製程偏移的限制,藉由單一比較器的概念,完成一個高穩定具可擴充能力的贏者/輸者通吃電路架構,並將其電路具體實現。此電路藉由單一的控制訊號,可規劃為贏者通吃功能或切換為輸者通吃功能,電路並具有加快速度之二層堆疊功能與寬廣的電壓供應範圍,能辨識10 mV 的輸入電壓差值。
但以上電路的功能只能處理訊號單一階級之辨識,為了在應用上更具彈性,此篇論文也設計出一個可規劃任意階級的過濾電路。並為了滿足次微米元件在低電壓運作的需求,提出電路工作電壓分別在1.2 V與 1 V的多功能階級過濾器,該過濾電路並同時具有多元贏者通吃功能。經量測實驗晶片在20 us 與4 us 反應時間下,分別具有40 mV 與100 mV 的辨識精確度。但此架構具有O(N2) 的複雜度,為了進一步降低架構的複雜度,我們提出一個隨著輸入變數個數增加,複雜度呈現線性成長的架構,此架構具有辨識 2 uA 電流差值的能力。且藉由基體驅動方式,亦成功的發展出一低電壓寬輸入範圍的多元贏者/輸者通吃電路。最後,藉由電容陣列、低壓開關、與互斥邏輯,實現了Hamming量測函數,並據以設計出一低壓相似性量測電路。搭配所設計出的贏者/輸者通吃電路,成功的模擬一個數位圖樣辨識系統,在輸入4x6圖素下,能辨識出每一個圖素差21 mV的電壓差值。本論文所提出電路的各項功能與文獻上重要電路相比較,顯示出本論文電路可允許在較低的電壓運作、較大的訊號輸入範圍、多元的階級處理功能、與對製程偏移有較高的穩定性。在應用與整合的考量下,具有較多優點與較佳彈性。
In this thesis, architecture designs and circuit realizations of CMOS analog signal rank-order processing are presented. Rank-order processing circuit is useful in pattern identification of artificial neural network, signals sorting, and fuzzy controller. Signal rank-order processing function includes minimum (MIN), maximum (MAX), median (MED), winner-take-all (WTA), loser-take-all (LTA), k-WTA, and arbitrary rank-order extraction. Analog output of MAX or MIN function can be obtained from the corresponding WTA or LTA digital output by using analog switches.
The operation and restriction of conventional WTA/LTA architectures are initially catalogued and analyzed. With regard to speed consideration, a new CMOS self-feedback LTA circuit operated 8.3 MHz with 15-mV identifiable capability on the average is arrived by measurement. With regard to reliability consideration, a scalable high reliable WTA/LTA circuit is achieved by utilization of a single-comparator architecture. WTA or LTA function is switchable by simple logic command. The circuit is expanded to two-layer architecture to further reduce response time, and it is also shown to have a wide supply voltage range. Measured result of an experimental chip has shown that 10 mV is distinguished.
Either WTA or LTA function, however, is only a single order operation. A new architecture for arbitrary rank-order extraction is designed. In CMOS sub-micro technologies, supply voltage of VLSI circuit is required to scale down in order to improve device reliability. A 1.2-V and a 1-V CMOS rank-order extractors with k-WTA capability are achieved in this thesis. Measurement results showed that the 1.2-V extractor with 40 mV resolution could operate successfully within 20 us. The 1-V extractor with 100-mV resolution is functional work within 4 us. One drawback of the extractors is that the number of the comparators required is proportional to the square of the number of inputs. The complexities of the architectures are O(N2) , where N is the number of input. In order to improve complexity, a rank-order extractor of O(N) complexity is analyzed and designed. The extractor is able to distinguish 2-uA difference among a set of input currents. Furthermore, based on bulk-driven technique, a 1-V wide-range k-WTA/k-LTA architecture is also developed, which is able to distinguish 5-mV input difference within 50 us.
Using these rank-order processing circuits and a low-voltage similar measurement (SM) circuit, one application for binary pattern identification is presented. Capacitor array, switches, and exclusive NOR gates realize Hamming function. Simulation results show the circuit responds a 21-mV difference for each one-pixel difference between two binary patterns of 4 x 6 dimension. Finally, these circuits compare with other designs in open literature. These circuits allow lower supply voltage, wider input range, multiple rank-order processing capability, and higher reliability. Depending upon application requirement and system integration, these proposed circuits have much specific advantages and a larger flexibility over conventional architectures.
CHAPTER 1 INTRODUCTION
1.1 Basic Concept ………………………………………………… 1
1.2 Organization of the Thesis ……………………………………… 6
CHAPTER 2 ANALOG WTA/LTA ARCHITECTURE
2.1 Architectures of Traditional WTA/LTA Circuits ………………… 7
2.2 Speed Improvement: A Self-Feedback LTA Circuit …………… 9
2.3 Reliability Improvement: A Highly Reliable WTA/LTA ………… 10
2.3.1 Operating Principle and Auto-Zero Comparator …………… 11
2.3.2 Architecture and Whole Operation ………………………… 15
2.3.3 Block Circuits ……………………………………………… 17
2.3.4 Design Consideration ……………………………………… 19
2.3.5 Expandability ……………………………………………… 20
2.4 Simulation and Measurement Results ………………………… 22
CHAPTER 3 LOW-VOLTAGE ARBITRARY RANK ORDER EXTRACTION
3.1 Principle of Rank-Order Extraction …………………………… 29
3.2 Architecture of Rank-Order Extraction ………………………… 31
3.3 1.2-V Rank Order Extractor ………………………………… 32
3.3.1 1.2-V Comparator ………………………………………… 32
3.3.2 Evaluation Cell ……………………………………………… 35
3.3.3 Design Consideration ……………………………………… 37
3.4 1-V Rank-Order Extractor …………………………………… 41
3.4.1 1-V Comparator …………………………………………… 42
3.4.2 Low-Voltage Analog Switch ………………………………… 49
3.4.3 Evaluation Cell Modification ………………………………… 51
3.5 Simulation and Measurement Results …………………………… 53
3.5.1 1.2-V Rank Order Extractor ……………………………… 53
3.5.2 1-V Rank Order Extractor ………………………………… 55
CAHPTER 4 ANALOG RANK-ORDER/k-WTA CIRCUITS OF O(N) COMPLEXITY
4.1 Algorithm of O(N) Complexity Rank-Order Extraction ……… 61
4.2 Architecture of Rank-Order Extraction ………………………… 62
4.2.1 Circuit Design and Analysis ………………………………… 63
4.2.2 Multi-Chip Expansibility for WTA/LTA …………………… 74
4.2.3 Accuracy Consideration …………………………………… 78
4.3 Architecture of k-WTA Function ……………………………… 80
4.3.1 Bulk-Driven Comparator …………………………………… 85
4.3.2 Block Circuit ………………………………………………… 87
4.4 Simulation and Measured Results ……………………………… 92
4.4.1 Rank-Order Extraction ……………………………………… 92
4.4.2 k-WTA Function …………………………………………… 97
CAHPTER 5 APPLICATION AND DISCUSSION
5.1 k-WTA for Length-L Rank-Order Identification ……………… 101
5.2 Identification of Binary Template Patterns ……………………… 102
5.2.1 Design of Low-Voltage Similarity Measurement Circuit ……… 103
5.2.2 Analysis of Non-Ideal Effects ………………………………… 106
5.2.3 Simulation and Measurement Results ………………………… 106
5.3 Discussion ……………………………………………………… 108
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS
6.1 Conclusions …………………………………………………… 111
6.2 Future Works ………………………………………………… 113
REFERENCES …………………………………………………… 115
[1] R. Lippmann, “An introduction to computing with neural nets,” IEEE Acoust., Speech, Signal Processing Mag.,, vol. 4, no. 2, pp. 4-22, Apr. 1987.
[2] J. Lazzaro, R. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-take-all networks of O(N) complexity,” Advances in Neural Inform. Processing Syst., vol. 1, pp. 703-711, 1989.
[3] J. P. Fitch, E. J. Coyle, and N. C. Gallagher, “The analog median filter,” IEEE Trans. Circuit Syst., vol. 33, no. 1, pp. 94-102, Jan. 1986.
[4] J. S. J. Li and W. H. Holmes, “Analog implementation of median filters for real-time signal processing,” IEEE Trans. Circuit Syst., vol. 35, no. 8, pp. 1032-1033, Aug. 1988.
[5] B. D. Liu, C. S. Tsay, C. H. Chen, E. H. Lu, and C. S. Laih, “An analog median filter with linear complexity for real-time processing,” in Proc. IEEE Int. Symp. Circuits Syst., 1991, pp. 2565-2568.
[6] J. S. J. Li and W. H. Holmes, “Analog implementation of median filters for real-time signal processing,” IEEE Trans. Consumer Electron., vol. 39, no. 1, pp. 25-32, Feb. 1993.
[7] T. Jarske and O. Vainio, “A review of median filter systems for analog signal processing,” Analog Integr. Circuits Signal Process. 3, pp. 127-135, 1993.
[8] I. E. Opris and G. T. A. Kovacs, “Analogue median circuit,” Electron. Lett., vol. 30, no. 17, pp. 1369-1370, Aug. 1994.
[9] C. K. Tse and K. C. Chun, “Design of a switched-current median filter,” IEEE Trans. Circuit Syst. II, vol. 42, no. 5, pp. 356-359, May 1995.
[10] S. Vlassis and S. Siskos, “CMOS analogue median circuit,” Electron. Lett., vol. 35, no. 13, pp. 1038-1040, June 1999.
[11] M. Sasaki, T. Inoue, Y. Shirai, and F. Ueno, “Fuzzy multiple-input maximum and minimum circuits in current mode and their analyses using bounded-difference equations,” IEEE Trans. Comput. 39(6), pp. 768-774, 1990.
[12] C. Y. Huang and B. D. Liu, “Current-mode multiple input maximum circuit for fuzzy logic controllers,” Electron. Lett., vol. 30, no. 23, pp. 1924-1925, Nov. 1994.
[13] C. Y. Huang, C. J. Wang, and B. D. Liu, “Modular current-mode multiple minimum circuit for fuzzy logic controllers,” in Proc. IEEE Int. Symp. Circuits Syst., 1996, pp. 361-363.
[14] S. I. Liu, P. Chen, C. Y. Chen, and J. G. Hwu, “Analog maximum, median and minimum circuit,” in Proc. IEEE Int. Symp. Circuits Syst., 1997, pp. 257-260.
[15] I. E. Opris, “Rail-to-rail multiple-input min/max circuit,” IEEE Trans. Circuit Syst. II, vol. 45, no. 1, pp. 137-141, Jan. 1998.
[16] S. Siskos, S. Vlassis, and I. Pitas, “Analog implementation of fast min/max filtering,” IEEE Trans. Circuit Syst. II, vol. 45, no. 7, pp. 913-918, July 1998.
[17] R. Perfetti, “Winner-take-all circuit for neurocomputing applications,” IEE Proc.-Circuits Devices and Syst., vol. 137, no. 5, pp. 353-359, Oct. 1990.
[18] B. Hochet, V. Peiris, S. Abdo, and M. J. Declercq, “Implementation of a learning Kohonen neuron based on a multilevel storage technique,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 262-267, March 1991.
[19] L. G. Johnson, S. M. S. Jalaleddine, “MOS implementation of winner-take-all network with application to content-addressable memory,” Electron. Lett., vol. 27, no. 11, pp. 957-958, May 1991.
[20] A. Cichocki and R. Unbehauen, “Winner-take-all neural network and its application to minimax optimization problems,” Electron. Lett., vol. 27, no. 22, pp. 2026-2028, Oct. 1991.
[21] W.-C. Fang, B. J. Sheu, O. T.-C. Chen, and J. Choi, “A VLSI neural processor for data compression using self-organizatiion networks,” IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 506-517, May 1992.
[22] M. E. Robinson, H. Yoneda, and E. Sanchez-Sinencio, “A modular CMOS design of a Hamming network,” IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 444-455, May 1992.
[23] U. Cilingiroglu, “A charge-based neural Hamming classifier,” IEEE J. Solid-State Circuits, vol. 28, no. 1, pp. 59-67, Jan. 1993.
[24] T. Yamashita, T. Shibata, and T. Ohmi, “Neuron MOS winner-take-all circuit and its application to associative memory,” in 1993 ISSCC Dig. Tech. Papers, Feb. 1993, pp. 236-237.
[25] Y. He, U. Cilingiroglu, and E. S. Sinencio, “A high-density and low-power charge-based Hamming network,” IEEE Trans. VLSI Syst., vol. 1, no. 1, pp. 56-62, March 1993.
[26] J. Choi and B. J. Sheu, “A high-precision VLSI winner-take-all circuit for self-organizing neural networks,” IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 576-583, May 1993.
[27] Y. He and U. Cilingiroglu, “A charge-based on-chip adaptation Kohonen neural network,” IEEE Trans. Neural Networks, vol. 4, no. 3, pp. 462-469, May 1993.
[28] D. Grant, J. Taylor, and P. Houselander, “Design, implementation and evaluation of a high-speed integrated Hamming neural classifier,” IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1154-1157, Sep. 1994.
[29] W. W. Moses, E. Beuville, and M. H. Ho, ”A winner-take-all IC for determining the crystal of interaction in PET detectors,” IEEE Trans. Nucl. Sci., vol. 43, no. 3, pp. 1615-1618, June 1996.
[30] R. Coultrip, “A CMOS binary pattern classifier based on Parzen method,” IEEE Trans. Neural Networks, vol. 9, no. 1, pp. 2-10, Jan. 1998.
[31] J. A. Starzyk and X. Fang, “CMOS current mode winner-take-all circuit with both excitatory and inhibitory feedback,” Electron. Lett., vol. 29, no. 10, pp. 908-910, May 1993.
[32] Y. He and E. Sanchez-Sinencio, “Min-net winner-take-all CMOS implementation,” Electron. Lett., vol. 29, no. 14, pp. 1237-1239, July 1993.
[33] T. Serrano and B. L. Barranco, “A modular current-mode high-precision winner-take-all circuit,” IEEE Trans. Circuit Syst.-II, vol. 42, no. 2, pp. 132-134, Feb. 1995.
[34] V. A. Pedroni, “Neural n-port voltage comparator network,” Electron. Lett., vol. 30, no. 21, pp. 1774-1775, Oct. 1994.
[35] V. A. Pedroni, “Inhibitory mechanism analysis of complexity O(N) MOS winner-take-all networks,” IEEE Trans. Circuit Syst.-I, vol. 42, no. 3, pp. 172-175, March 1995.
[36] S. Smedley, J. Taylor, and M. Wilby, “A scalable high-speed current-mode winner-take-all network for VLSI neural applications,” IEEE Trans. Circuit Syst. I, vol. 42, no. 5, pp. 289-291, May 1995.
[37] S. P. Deweerth and T. G. Morris, “CMOS current mode winner-take-all circuit with distributed hysteresis,” Electron. Lett., vol. 31, no. 13, pp. 1051-1053, June 1995.
[38] J. S. Kane and T. G. Kincaid, “Optoelectronic winner-take-all VLSI shunting neural network,” IEEE Trans. Neural Networks, vol. 6, no. 5, pp. 1275-1279, Sept. 1995.
[39] H. Chaoui, “CMOS multiple input voltage winner takes all circuit,” Electron. Lett., vol. 31, no. 22, pp. 1915-1916, Oct. 1995.
[40] T. S. Gotarredona and B. L. Barranco, “A high-precision current-mode WTA-MAX circuit with multichip capability,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 280-286, Feb. 1998.
[41] A. Demosthenous, S. Smedley, and J. Taylor, “A CMOS analog winner-take-all network for large-scale applications,” IEEE Trans. Circuit Syst.-I, vol. 45, no. 3, pp. 300-304, March 1998.
[42] D. Y. Aksn, “A High-precision high-resolution WTA-MAX circuit of O(N) complexity,” IEEE Trans. Circuit Syst. II, vol. 49, no. 1, pp. 48-53, Jan. 2002.
[43] B. Sekerkiran and U. Cilingiroglu, “Improving the resolution of Lazzaro winner-take-all circuit,” in Proc. IEEE Int. Conf. Neural Networks, 1997, pp. 1005-1008.
[44] B. Sekerkiran and U. Cilingiroglu, “A high resolution CMOS winner-take-all circuit,” in Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 2023-2026.
[45] R. Perfetti, “On the robust design of k-winners-take-all networks,” IEEE Trans. Circuit Syst. II, vol. 42, no. 1, pp. 55-58, Jan. 1995.
[46] K. Urahama and T. Nagao, “K-winners-take-all circuit with O(N) complexity,” IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 776-778, May 1995.
[47] J.-F. Yang and C.-M. Chen, “A dynamic K-winners-take-all neural network,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 3, pp. 523-526, June 1997.
[48] T.-C. Hsu and S.-D. Wang, “k-winners-take-all neural net with O(1) time complexity,” IEEE Trans. Neural Networks, vol. 8, no. 6, pp. 1557-1561, Nov. 1997.
[49] B. Sekerkiran and U. Cilingiroglu, “A CMOS K-winners-take-all circuit with O(N) complexity,” IEEE Trans. Circuit Syst. II, vol. 46, no. 1, pp. 1-4, Jan. 1999.
[50] S. Paul and K. Huper, “Analog rank filtering,” IEEE Trans. Circuits Syst. I, vol. 40, no. 7, pp. 469–475, July 1993.
[51] S. Paul and K. Huper, “An analog circuit for eigenvalue calculation and rank filtering,” IEEE Trans Circuits Syst. I, vol. 41, no. 11, pp. 36–40, Nov. 1994.
[52] K. Urahama and T. Nagao, “Direct analog rank filtering,” IEEE Trans Circuits Syst. I, vol. 42, no. 7, pp. 385–388, July 1995.
[53] I. Opris, “Analog rank extractors,” IEEE Trans Circuits Syst. I, vol. 44, no. 12, pp. 1114–1121, Dec. 1997.
[54] T. L. E. Dake and U. Cilingiroglu, “Rank-order filter using multiple-winners-take-all,” in Proc. IEEE 43rd Midwest Symp. on Circuits and Systems, 2000, pp. 482-485.
[55] B. P. Tan and D. M. Wilson, “Semiparallel rank order filtering in analog VLSI,” IEEE Trans. Circuit Syst. II, vol. 48, no. 2, pp. 198-205, Feb. 2001.
[56] U. Cilingiroglu, “A sampled-analog rank-order-filter architecture,” in Proc. IEEE 8th Int. Conf. on Electronics, Circuits, and Systems, 2001, pp. 173-176.
[57] S. Siskos, S. Vlassis, and I. Pitas, “Analog implementation of an order-statistics filter,” IEEE Trans. Circuit Syst. I, vol. 46, no. 10, pp. 1296-1300, Oct. 1999.
[58] G. Fikos, S. Vlassis, and S. Siskos, “High-speed, accurate analogue CMOS rank filter,” Electron. Lett., vol. 36, no. 7, pp. 593-594, March 2000.
[59] Semiconductor Industry Association. (2002). International technology roadmap for semiconductors 2002 update. [Online]. Available: http://public.itrs.net/.
[60] Y. C. Hung and B. D. Liu, “A self-feedback high-speed CMOS loser-takes-all circuit for vector-quantizer application,” presented at the International Symposium on communications, 2001, pp. 148.
[61] Y. C. Hung and B. D. Liu, “A scalable high-precision CMOS max/min circuit using single comparator,” in Proc. IEEE 1st AP-ASIC’99, 1999, pp. 206-209.
[62] J. L. Mccreary and J. B. Hunt, “An NMOS comparator for a bubble memory,” IEEE J. Solid-State Circuits, vol. 16, no. 6, pp. 689-694, Dec. 1981.
[63] D. J. Allstot, “A precision variable-supply CMOS comparator,” IEEE J. Solid-State Circuits, vol. 17, no. 6, pp. 1080-1087, Dec. 1982.
[64] B. J. Mccarroll, C. G. Sodini and H.-S. Lee, “A high-speed CMOS comparator for use in an ADC,” IEEE J. Solid-State Circuits, vol. 23, no. 1, pp. 159-165, Feb. 1988.
[65] M. Steyaert and V. Comino, “High-speed accurate CMOS comparator,” Electron. Lett., vol. 24, no. 16, pp. 1027-1028, Aug. 1988.
[66] J.-T. Wu and B. A. Wooley, “A 100-MHz pipelined CMOS comparator,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1379-1385, Dec. 1988.
[67] G. M. Yin, F. O. Eynde and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992.
[68] J. H. Atherton and H. T. Simmonds, “An offset reduction technique for use with CMOS integrated comparators and amplifiers,” IEEE J. Solid-State Circuits, vol. 27, no. 8, pp. 1168-1175, Aug. 1992.
[69] O. B. Laug, T. M. Souders, and D. R. Flach, “A custom integrated circuit comparator for high-performance sampling applications,” IEEE Trans. Instrum. Meas., vol. 41, no. 6, pp. 850-855, Dec. 1992.
[70] M. Bruccoleri and P. Cusinato, “Offset reduction technique for use with high speed CMOS comparators,” Electron. Lett., vol. 32, no. 13, pp. 1193-1194, June 1996.
[71] T. Shih, L. Der, S. H. Lewis and P. J. Hurst, “A fully differential comparator using a switched-capacitor differencing circuit with common-mode rejection,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 250-253, Feb. 1997.
[72] K. Kotani, T. Shibata and T. Ohmi, “CMOS charge-transfer preamplifier for offset-fluctuation cancellation in low-power A/D converters,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 762-769, May 1998.
[73] A. Boni, G. Chiorboli and C. Morandi, “Dynamic characterization of high-speed latching comparators,” Electron. Lett., vol. 36, no. 5, pp. 402-403, March 2000.
[74] S. Hosotani, T. Miki, A. Maeda, and N. Yazawa, “An 8-bit 20-MS/s CMOS A/D converter with 50-mW power consumption,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 167-172, Feb. 1990.
[75] J. Yuan, C. Stensson, “High - speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-69, Feb. 1989.
[76] Y. C. Hung and B. D. Liu, “A generalized high-precision analog CMOS rank finder for max/min/med application,” in Proc. IEEE 8th Int. Conf. Fuzzy Syst., 1999, pp. 1680-1684.
[77] Y. C. Hung and B. D. Liu, “A 1.2-V rail-to-rail analog CMOS rank filter,” in Proc. Int. Analog VLSI Workshop, 1999, pp. 129-134.
[78] Y. C. Hung and B. D. Liu, “A 1-V low power rail-to-rail analog CMOS multi-function filter with configurable capability,” in Proc. IEEE 2nd AP-ASIC’00, 2000, pp. 115-118.
[79] Y. C. Hung and B. D. Liu, “A 1.2-V rail-to-rail analog CMOS rank-order filter with k-WTA capability,” Analog Integr. Circuits Signal Process., vol. 32, no. 3, pp. 219-230, Sept. 2002.
[80] F. Maloberti, F. Francesconi, P. Malcovati, and O. J. A. P. Nys, “Design considerations on low-voltage low-power data converters,” IEEE Trans. Circuit Syst. I, vol. 42, no. 11, pp. 853-863, Nov. 1995.
[81] W. Sansen, M. Steyaert, V. Peluso, and E. Peeters, “Toward sub 1V analog integrated circuits in submicron standard CMOS technologies,” in ISSCC Dig. Tech. Papers, Feb. 1998, pp. 186-187.
[82] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[83] M. Waltari and K. A. I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129-134, Jan. 2001.
[84] J. Terada, Y. Matsuya, F. Morisawa, and Y. Kado, “8-mW, 1-V, 100-MSPS, 6-bit A/D converter using transconductance latched comparator,” in Proc. IEEE 2nd AP-ASIC’2000, 2000, pp. 53-56.
[85] A. Yukawa, “A CMOS 8-bit high-speed A/D converter IC,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 775-779, June 1985.
[86] C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18-mm CMOS technology,” in Proc. ISCAS, 2001, pp. 460-463.
[87] P. Rombouts, W. D. Wilde, and L. Weyten, “A 13.5-b 1.2-V micropower extended counting A/D converter,” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 176-183, Feb. 2001.
[88] B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992.
[89] P. Cusinato, M. Bruccoleri, D. D. Caviglia, and M. Valle, “Analysis of the behavior of a dynamic latch comparator,” IEEE Trans. Circuit Syst. I, vol. 45, no. 3, pp. 294-298, March 1998.
[90] Y. C. Hung and B. D. Liu, “A 1-V CMOS analog comparator using auto-zero and complementary differential-input technique,” in Proc. IEEE 3rd AP-ASIC’02, 2002, pp. 181-184.
[91] Y. Nakagome, H. Tanaka, K. Takeuchi, E. Kume, Y. Watanabe, T. Kaga, Y. Kawamoto, F. Murai, R. Izawa, D. Hisamoto, T. Kisu, T. Nishida, E. Takeda, and K. Itoh, “An experimental 1.5-V 64-Mb DRAM,” IEEE J. Solid-State Circuits, vol. 26, pp. 465-472, Apr. 1991.
[92] M. Dessouky and A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 349-355, March 2001.
[93] J. Crols and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936-942, Aug. 1994.
[94] Y. C. Hung and B. D. Liu, “Design techniques of low-voltage low-power analog CMOS signal processing circuit for fuzzy controller and neural network,” in Proc. Int. Analog VLSI Workshop, 2001, pp. 19-24.
[95] Y. C. Hung and B. D. Liu, “1-V CMOS comparator for programmable analog rank-order extractor,” IEEE Trans. Circuit Syst. I, vol. 50, no. 5, pp. 673-677, May 2003.
[96] Y. C. Hung and B. D. Liu, “An analog CMOS rank-order extractor with O(N) complexity using maximum/winner-take-all circuit,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems, vol. 2, 2002, pp. 389-394.
[97] Y. C. Hung and B. D. Liu, “An analog CMOS rank-order extractor with O(N) complexity using maximum/winner-take-all Circuit,” IEICE Trans. Electron., vol. E86-C, no. 8, pp. 1765-1773, Aug. 2003.
[98] Y. C. Hung and B. D. Liu, “A high-precision self-adaptive analog CMOS current-mode maximum/minimum circuit with O(N) complexity for rank-order extractor,” in Proc. Int. Analog VLSI Workshop, 2001, pp. 1-6.
[99] J. Williams, “Current source alternatives increase design flexibility,” EDN, pp. 169-174, Sept. 1982.
[100] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
[101] K. Okada, H. Onodera, and K. Tamaru, “Layout dependent matching analysis of CMOS circuits,” IEICE Trans. Fundamentals, vol. E82-A, no. 2, pp. 348-355, Feb. 1999.
[102] Y. C. Hung and B. D. Liu, “1-V rail-to-rail analog CMOS programmable winner-take-all system with two-side searching capability,” in Proc. 14th VLSI Design/ CAD Symposium, 2003, pp. 41-44.
[103] Y. C. Hung and B. D. Liu, “A CMOS vector quantizer for pattern recognition,” in Proc. IEEE 1st AP-ASIC’99, 1999, pp. 112-115.
[104] Y. C. Hung and B. D. Liu, “Low-voltage low-power CMOS similarity measurement chip for binary pattern identification,” in Proc. 14th VLSI Design/ CAD Symposium, 2003, pp. 333-336.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔