跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游宗憲
研究生(外文):Zong-Xian You
論文名稱:Metal-phthalocyanines有機薄膜電傳輸性質及發光元件光電特性之研究
論文名稱(外文):The researches on the electrical transport properties of metal-pc thin film and optoelectric characteristics of metal-pc based light-emitting devices.
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:電特性有機發光二極體
外文關鍵詞:OLEDthe electrical transport properties
相關次數:
  • 被引用被引用:8
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  由於CuPc 可扮演緩衝層和電洞注入層的角色,改善有機材料的發光薄膜穩定性不足的問題,並使得電洞的注入效率得到改善,讓更多的電子電洞能夠產生再結合,進而達到效能的增加,所以在本研究中,我們使用Metal-Pc電洞注入層來製作有機發光二極體,探討其他Metal-Pc是否也能改善元件效能。
  本論文主要分為二大部分,第一部份針對 Metal-Pc 單層薄膜將其製成簡單的三明治結構做直流電特性量測,研究其電荷注入、傳輸機制、移動率μp、陷阱濃度Nt、跟電洞濃度p0。第二部份我們將Metal-Pc當作電洞注入層製作成OLED元件,先由CuPc所求得之最佳膜厚(10nm)套用到各Metal-Pc,元件結構ITO/Metal-Pc(10nm)/NPB(60nm)/Alq3(75nm)/LiF/Al,探討不同 Metal-Pc對元件效能之影響。
  由實驗結果發現:HOMO值接近ITO電極費米能階的Metal-Pc分子可改善電洞注入效率;遷移率小、陷阱濃度低、電洞載子少的Metal-Pc分子可增加元件的發光效率。
  Since CuPc films play the role of the buffer-layer and the hole-injection layer, improve the problem of OLEDs that the stability of emitting films are insufficient and improve the hole-injecting efficiency for more electron-hole to recombine and enhance the performance of OLEDs. In this study, we fabricate OLEDs with Metal-Pcs as an hole-injection layer to investigate their performance.
  In the first phase of this research, we make the sample with sandwich structure, ITO/Metal-Pc/cathode. We measure the carrier injecting, transport mechanism, mobility, trap concentration, and hole concentration. Then, we find the preferred thickness of Metal-Pc, to fabricate this structure’s OLEDs, ITO/Metal-Pc(10nm)/NPB(60nm)/Alq3(75nm)/LiF/Al.
  In this study, we find that as the Metal-Pcs’ HOMO are closed to ITO’s EF(5.0eV) , hole-injecting efficiency can be improved. The smaller mobility, trap concentration, and hole concentration of Metal-Pc can enhance devices’ luminous efficiency.
目錄
中文摘要……………………………………………………………………Ⅰ
英文摘要……………………………………………………………………Ⅱ
誌謝…………………………………………………………………………Ⅲ
目錄…………………………………………………………………………Ⅳ
表目錄………………………………………………………………………Ⅷ
圖目錄………………………………………………………………………Ⅸ
第一章 導論…………………………………………………………………1
1-1前言………………………………………………………………………1
1-2CuPc 運用之文獻回顧 …………………………………………………2
1-3研究動機與目的…………………………………………………………3
第二章 理論基礎……………………………………………………………5
2-1單層元件的電特性………………………………………………………5
2-1-1電荷注入………………………………………………………………6
2-1-1-1熱激發………………………………………………………………6
2-1-1-2穿隧效應……………………………………………………………6
2-1-2電荷傳播 ……………………………………………………7
2-1-2-1歐姆傳導……………………………………………………………7
2-1-2-2 空間電荷限制傳導 ………………………………………………8
2-2螢光理論與元件的基本結構 …………………………………………13
2-3有機材料的介紹 ………………………………………………………18
2-3-1電洞注入材料 ………………………………………………………18
2-3-2電洞傳輸材料 ………………………………………………………18
2-3-3電子傳輸材料及發光層主體材料 …………………………………18
2-3-4電子傳輸層的材料 …………………………………………………19
2-3-5低功函數負電極 ……………………………………………………19
2-4元件衰減機制 …………………………………………………………20
第三章 實驗步驟與方法 …………………………………………………22
3-1前言 ……………………………………………………………………22
3-2真空熱蒸鍍系統設備(Thermal evaporation system) ……………22
3-3實驗材料 ………………………………………………………………22
3-4 ITO基板前處理之實驗步驟 …………………………………………23
3-5真空蒸鍍之實驗步驟 …………………………………………………25
3-6單體沉積速率之測定 …………………………………………………26
3-7單層元件之阻抗、電流與電壓關係曲線圖量測 ……………………26
3-8 OLED多層元件之電流、電壓與亮度關係曲線圖量測………………26
第四章 結果與討論 ………………………………………………………27
4-1單層元件 ………………………………………………………………27
4-1-1 CuPc單層元件………………………………………………………27
4-1-1-1單層元件ITO/CuPc/Au……………………………………………28
4-1-1-2單層元件ITO/CuPc/Al……………………………………………29
4-1-2 SnPc單層元件………………………………………………………29
4-1-2-1單層元件ITO/SnPc/Au……………………………………………29
4-1-2-2單層元件ITO/SnPc/Al……………………………………………30
4-1-3 NiPc單層元件………………………………………………………30
4-1-3-1單層元件ITO/NiPc/Au……………………………………………30
4-1-3-2單層元件ITO/NiPc/Al……………………………………………30
4-1-4 ZnPc單層元件………………………………………………………31
4-1-4-1單層元件ITO/ZnPc/Au……………………………………………31
4-1-4-2單層元件ITO/ZnPc/Al……………………………………………31
4-2電洞注入層對元件特性的影響 ………………………………………31
4-2-1 CuPc電洞注入層厚度對元件特性的影響…………………………31
4-2-2不同Metal-Pc當電洞注入層對元件特性的影響 …………………34
第五章結論與未來展望……………………………………………………37
5-1結論 ……………………………………………………………………37
5-2未來展望 ………………………………………………………………37
參考文獻……………………………………………………………………39
附圖…………………………………………………………………………46
附表…………………………………………………………………………75
[1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38 , 2042
(1963).
[2] W. Helfrich and W.G. Schneider, Phys. Rev. Lett. 14, 229
(1965).
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature,
347 ,539 (1990).
[4] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, L1938(1991).
[5] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, L1941(1991).
[6] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57,
531 (1990).
[7] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett.
69,2160 (1996).
[8] C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl.
Phys. Lett. 67, 3853 (1995).
[9] J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
[10] Y. Hamada, H. Kanno, T. tsujioka, H. Takahashi, and T. Usuki,
Appl. Phys. Lett. 75, 1682 (1999).
[11] L. S. Hung and C. W. Tang, Appl. Phys. Lett. 74, 3209 (1999).
[12] H. Riel, W. Brutting , T. Beierlein , E. Haskal , P. Muller ,
W. Rieß H. Riel et al. Synthetic Metals 111–112,303–306
(2000).
[13] Sang Keol Kim, Taek Gyun Chung , Dong Hoe Chung , Ho Sik Lee ,
Min Jong Song , Jong Wook Park , Joon Ung Lee , Tae Wan Kim ,
S.K. Kim et al. / Optical Materials 21,159–164 (2002).
[14] Paulo N.M. dos Anjos, Hany Aziz, Nan-Xing Hu, Zoran D. Popovic
P.N.M. dos Anjos et al./Organic Electronics 3(2002) 9–13.
[15] I. D. Park, J. Appl. Phys. 75, 1656 (1994).
[16] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C.
Bradley, J. Appl. Phys. 84, 6737 (1998).
[17] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev.
B 61, 2151 (2000).
[18] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed.,p.
319.
[19] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,
1981).
[20] E. H. Rhoderick and R. H. Williams,
Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
[21] A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, 5004
(1999).
[22] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and
J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
[23] P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys.
82, 6319 (1997).
[24] R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A
119, 173 (1928).
[25] Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
[26] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger,
J. Appl. Phys. 77, 694 (1995).
[27] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A.
Greiner, W. Heitz, and H. Bässler, Synth. Met. 68, 263 (1995).
[28] P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith,
Appl. Phys. Lett. 69, 2270 (1996).
[29] D. V. Khramtchenkov, H. Bässler, and V. I. Arkhipov, J. Appl.
Phys. 79, 9283 (1996).
[30] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl.
Phys. Lett. 68, 3308 (1996).
[30] D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys.
86, 5116 (1999).
[31] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R.
Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys.
79, 7991 (1996).
[32] S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, 1951
(1997).
[33] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl.
Phys. 82, 6326 (1997).
[34] M. Dongge, I. A. Hümmelgen, B. Hu, and F. E. Karasz, J. Appl.
Phys. 86, 3181 (1999).
[35] Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
[36] D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao,
F. Wang, and F. E. Karasz, J. Appl. Phys. 87, 312 (2000).
[37] K. C. Kao, W. Hwang, Electrical Transport in Solids
(Pergamon, Oxford, 1981).
[38] N. F. Mott and R. W. Gurney, Electronic Process in Ionic
Crystals (Dover Publication, New York, 1940).
[39] W. Helfrich, Physics and Chemistry of the Organic Solid State
3, 1 (1967).
[40] M. A. Lambert and P. Marks, Current Injection in Solids
(Academic, New York, 1970).
[41] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl.
Phys. Lett. 77, 1852 (2000).
[42] P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng.
27, 53 (2000).
[43] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth.
Met. 121, 1621 (2001).
[44] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris,
Appl. Phys. Lett. 74, 2809 (1999).
[45] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G.
Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112,
289 (2000).
[46] Kelly, S. M.; Flat Panel Displays Advanced Organic Materials;
The Royal Society of Chemistry, Cambridge, 2000.
[47] J. M. Thomas, J. O. Williams, and L. M. Turton, Trans. Faraday
Soc. 64, 2496 (1968).
[48] D. F. Williams and M. Schadt, J. Chem. Phys. 53, 3480 (1970).
[49] P. J. Reucroft and F. D. Mullins, J. Phys. Chem. Solids, 35,
347 (1974).
[50] K. Unger, Phys. Stat, Sol. 2, 1279 (1962).
[51] J. G. Simmons and M. C. Tam, Phys. Rev. B 7, 3706 (1973).
[52] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams,
and J. O. Williams, J. Chem. Soc. Faraday II 70, 853 (1974).
[53] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C.
Bradley, J. Appl. Phys. 84, 6737 (1998).
[54] M. Koehler, and I. A. Hümmelgen, J. Appl. Phys. 87, 3074
(2000).
[55] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev.
B 61, 2151 (2000).
[56] C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E.
Thompson, S. R. Forrest, and R. A. Register, Appl. Phys.
Lett.66, 653 (1995).
[57] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P.
Monkman, and M. C. Petty, J. Phys. D: Appl. Phys. 33, 1029
(2000).
[58] Y. Sato, S. Ichinosawa, H. Hanai, IEEE Journal of Selected
Topics in Quantum Electronics 4, 40 (1998)
[59] E. M Han, L. M. Do, N. Yamamoto, M. Fujihira, Thin Solid Films,
273, 202 (1996).
[60] L. Do, E. Han, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.
Cryst. 280, 373 (1996)
[61] F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen, and K. A.
Higginson, Chem. Mater. 8, 1363 (1996)
[62] H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp,
and G. Xu, Appl. Phys. Lett. 72, 756 (1998)
[63] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D.
M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922
(1994)
[64] J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D.
M. Roitman, J. R. Sheets, and R. L. Moon, J. Appl. Phys. 80,
6002 (1996)
[65] H. Aziz and G. Xu, J. Phys. Chem. B 101, 4009 (1997)
[66] H. Aziz, Z. Popovic, C. Tripp, N. X. Hu, A. M. Hor, and G.
Xu, Appl. Phys. Lett. 72, 2642 (1998)
[67] M. Probst, and R. Haight, Appl. Phys. Lett. 70, 1420 (1997)
[68] M. A. Lampert, Rep. Progr. Phys., 27, 329 (1964)
[69] A. Ahmed and R. A. Collins, phys. stat. sol. (a), 123, 201
(1991)
[70] R. A. Collins and K. A. Mohamad, Thin Solid Flims, 145, 133
(1986)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊