(3.234.221.162) 您好!臺灣時間:2021/04/14 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴敏誠
研究生(外文):Min-Cheng Lai
論文名稱:架構於光纖光柵之波分與碼分多重擷取網路編解碼器之熱調實驗
論文名稱(外文):Thermal Tuning Experiments on Fiber-Grating-based WDMA/OCDMA Network Coder/Decodersfor Multi-Users Optical Communications
指導教授:黃振發黃振發引用關係
指導教授(外文):Jen-Fa Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:51
中文關鍵詞:多重擷取熱調光纖光柵
外文關鍵詞:CDMATHERMAL TUNINGFIBER BRAGG GRATING
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
  在這篇論文中,我們提出一個結合波分與碼分的網路編解碼裝置並以實驗驗證之。在網路上的所有使用者被區分成數個群體,每個群體有自己專屬的一組碼與編碼裝置。此編碼裝置是利用布雷格光柵及加熱裝置設計而成。利用對布雷格光柵的加熱,我們可以將一個單峰反射頻譜調變成相對應於使用者簽章碼的多峰狀態。基於我們所發展出來的調變與檢測技巧�o利用平衡檢測器對近乎正交碼作相關函數的相減,此架構可以有效的消除其他使用者的多重擷取干擾。它提供了幾個重要的優點。首先,隨著使用者的增加,我們只需增加群體數,使的多重擷取干擾不至惡化。其次,利用加熱裝置對布雷格光柵的調變,可以省去光柵的使用數量。我們的實驗平台是由一個可調變成三種簽章碼的編碼器與三個相對應的接收解碼器所構成。對匹配與不匹配的情況同時作驗證。量測結果證明我們所提議的方法是成功並且可實行的。
  In this thesis, a WDMA/CDMA spectral-coding with fiber-Bragg-grating (FBG) and heating equipment-based encoder was proposed and experimentally demonstrated. All users in the network are divided into several groups, each user needs one group encoder to generate specific signature code for the users in each group. Utilizing heating of Bragg grating, we can modulate the reflected spectrum of one uniform FBG to the multi-peaks form corresponding to the users’ signature code. Based on the detection principles that we have developed—correlation subtractions of nearly orthogonal codes with balanced photo-detectors, it can effectively eliminate the multiple-access interference (MAI) from other users. It has offered several important advantages. First of all, with the users increase, we only need to increase the number of groups without worsening the MAI. Secondly, modulating FBGs by heating device, the number of FBG is decreased. Our experiment platform consists of one tunable encoder and three decoders. Both matched and unmatched cases are demonstrated. Our measurements verify that our proposed scheme is successful and practicable.
Chapter 1. Introduction......................... 1
1.1. Optical Code-Division Multiple-Access (OCDMA)......................................... 1
1.2. Motivation of the Research............. ... 6
1.3. Sections Preview........................... 7
Chapter 2. Overviews on Fiber Gratings for Optical CDMA............................................ 8
2.1. Fundamentals of Fiber-Bragg-Gratings (FBGs) 8
2.2. Thermal Sensitivity and Time Response Analysis of FBG.......................................... 13
2.3. Optical Codes used in Optical CDMA......... 16
2.3.1. Maximal-Length Sequence (M-Sequence) Codes ................................................ 16
2.3.2. Walsh-Hadamard Codes .................... 18
Chapter 3. WDMA/CDMA Optical Communication System ................................................ 20
3.1. FBG-based OCDMA System .................... 21
3.2. WDMA/CDMA System Description .............. 25
3.3. MAI Reduction ............................. 28
Chapter 4. Realization of Spectral-Amplitude-Coded
WDMA/CDMA Coder/Decoders........................ 34
4.1. The Development of Thermal Tuning on Fiber Grating......................................... 34
4.2. Test of Thermal Tuning Mechanism .......... 37
4.3. Demonstration for Codec Setup ............. 40
4.3.1. Setup of Network Encoder................. 40
4.3.2. Setup of Network Decoder................. 41
4.3.3. Experimental Setup of WDMA/CDMA System....42
4.4. Experimental Results and Discussions ...... 43
4.4.1. Experimental Results on Matched Coding Case ................................................ 44
4.4.2. Experimental Results on Unmatched Coding Case............................................ 46
4.5. Discussions................................ 48
Chapter 5. Conclusions ......................... 49
[1]. J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent Ultrashort Light Pulse Code- Division Multiple-Access Communication Systems,” IEEE J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.

[2]. K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol., vol. 15, pp. 1263-1276, Aug. 1997.

[3]. R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Coherence Coding for Photonic Code-Division Multiple Access Networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1826-1837, September 1995.

[4]. L.R. Chen, S.D. Benjamin, P.W.E. Smith, and J.E. Sipe, “Applications of Ultrashort Pulse Propagation in Bragg Gratings for Wavelength Division Multiplexing and Code Division Multiple Access,” IEEE J. Quantum Electronics, vol. 34, no. 11, pp. 2117-2129, November 1998.

[5]. A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Spectral phase encoding and decoding using fiber Bragg gratings,” OFC/IOOC, Technical Digest PD33/1-PD33/3, pp. 21-26, Feb. 1999.

[6]. H. Fathallah, L.A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, March 1999.

[7]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, pp. 479-482, Apr. 1993.

[8]. L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett., vol. 31, no. 6, pp. 469-470, Mar. 1995.

[9]. T. Pfeiffer, B. Deppisch, M. Kaiser, and R. Heidemann, “High speed optical network for asynchronous multiuser access applying periodic spectral coding of broadband sources,” Electron. Lett., vol. 33, pp. 2141–2142, 1997.

[10]. J.F. Huang and D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, pp. 1252–1254, Sept. 2000.

[11]. J.F. Huang, D.Z. Hsu, and Y.F. Wang, “Photonic CDMA networking with spectrally pseudo-orthogonal coded fiber Bragg gratings,” IEICE Trans. Commun., vol. E83-B, pp. 2331–2340, 2000.

[12]. J.F. Huang and C.C. Yang, “Reductions of Multiple-Access Interference in Fiber-Grating- Based Optical CDMA Network,” IEEE Trans. on Commun., vol. 50, no. 10, pp. 1680-1687, October 2002.

[13]. C.C. Yang and J.F. Huang, “Two-Dimensional M-Matrices Coding in Spatial/Frequency Optical CDMA Networks,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 168-170 (2003).

[14]. S. Gupta, T. Mizunami, and T. Shimomura, “Computer Control of Fiber Bragg Grating Spectral Characteristics Using a Thermal Head,” J. lightwave Technol., vol. 15, pp. 1925-1928 (1997).

[15]. M.A. Rodriguez, M.S. Malcuit, and J.J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Optics Communications, vol. 177, pp. 251-257 (2000).

[16]. T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, pp. 1277-1294.

[17]. M. Mahmoud, Z. Ghassemlooy,, and L. Chao,” Modeling and analysis on the thermal tuning of fiber Bragg gratings for optical communications applications”, 3rd Intern. Sympo. on Commun. Sysms., Networks and DSP, 15-17 July 2002, Stafford, U.K., pp. 86-89.
.
[18]. W.W. Morey, G. Meltz, and W.H. Glenn, “Fiber optic Bragg grating sensors,” in Proc. SPIE Fiber Optic and Laser Sensors VII, 1989, vol. 1169, pp. 98–107.

[19]. G. Meltz and W.W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in Proc. SPIE Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, Ed., 1991, vol. 1516, pp. 185–199.

[20]. S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, “Fiber Bragg grating cryogenic temperature sensors,” Appl. Opt., vol. 34, pp. 5202–5205, Sept. 1996.

[21]. M. Le Blanc, S.Y. Huang, M.M. Ohn, and R.M. Measures, “Tunable chirping of a fiber Bragg grating using a tapered cantilever bed,” Electron. Lett., vol. 30, pp. 2163–2165, Dec. 1994.

[22]. P.C. Hill and B.J. Eggleton, “Strain gradient chirp of fiber Bragg gratings,” Electron. Lett., vol. 30, pp. 1172–1174, July 1994.

[23]. R.I. Laming, N. Robinson, P.L. Scrivener, M.N. Zervas, S. Barcelos, L. Reekie, and J.A. Tucknott, “A dispersion tunable grating in a 10- Gb/s 100–200-km-step index fiber link,” IEEE Photon. Technol. Lett., vol. 8, pp. 428–430, Mar. 1996.

[24]. M.G. Xu, A.T. Alavie, R. Maaskant, and M.M. Ohn, “Tunable fiber bandpass filter based on a linearly chirped fiber Bragg grating for wavelength demultiplexing,” Electron. Lett., vol. 32, pp. 1918–1919, Sept. 1996.

[25]. M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, “Dispersion variable fiber Bragg grating using a piezoelectric stack,” Electron. Lett., vol. 32, pp. 2000–2001, Oct. 1996.

[26]. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fiber Bragg gratings,” Electron. Lett., vol. 31, pp. 1007–1009, June 1995.

[27]. S. Li, H. Ding, and K.T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett., vol. 33, pp. 52–53, Jan. 1997.

[28]. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, and K.P. Koo, “Fiber Grating Sensors,” J. lightwave Technol., vol. 15, pp. 1442-1463 (1997).

[29]. B. Dabarsyah, C.S. Goh, S.K. Khijwania, S.Y. Set, and K. Kikuchiand, “Adjustable Dispersion-Compensation Devices With Wavelength Tunability Based on Enhanced Thermal Chirping of Fiber Bragg Gratings,” IEEE Photonics Technology Letters, vol. 15, no. 3, pp. 416-418 (2003).
[30]. S.K. Khijwania, C.S. Goh, S.Y. Set and K. Kikuchi, “A novel tunable dispersion slope compensator based on nonlinearly thermally chirped fiber Bragg grating,” Opt. Commun. 227 (2003) 107-113.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔