跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/23 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖兼賢
研究生(外文):Chien-Hsien Liao
論文名稱:以離散位置資訊作速度與加速度估測之研究
論文名稱(外文):Study on Velocity and Acceleration Estimation from Discrete-Time Position Data
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming-Yang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:速度估測加速度估測
外文關鍵詞:velocity estimationacceleration estimation
相關次數:
  • 被引用被引用:13
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  一般而言,回授控制是伺服控制系統中基本且必要的手段。然而閉迴路系統對於感測元件的靈敏度很高,若感測元件本身易受雜訊影響,導致回授訊號受到污染,反而會破壞了整體系統性能。因此一純淨的回授訊號源不但能提升系統的控制性能,更能降低控制器設計的複雜度。另一方面,伺服控制系統近年來已成為產業機械中重要的基本組件之一。然而對於諸多產業機械而言,欲達到自動化且高精密度的生產目標,其伺服控制系統需要速度、甚至加速度的回授訊號。有鑑於此,本論文之主要目的在於分析各種速度與加速度估測法則並比較其優劣,期於不同的速度及加速度應用範圍中,提供一適當的估測方式。此外,本論文所使用之系統參數鑑別策略,有別於一般使用頻譜分析儀找出系統模型的方式,能有效且快速地決定系統參數。最後本論文以AC伺服馬達搭配一負載進行實驗,以驗證各估測法則之性能。
  Generally speaking, feedback control is a basic and necessary trick in servo control systems. However, a closed-loop system is highly sensitive to the performances of the measurement devices. If these devices are not robust to the noise, the performance of the closed-loop system will be deteriorated due to the polluted feedback signal. Therefore, a high-accuracy feedback signal not only can improve the system performance, but also can reduce the complexity of controller design. On the other hand, a servo control system has become one of the fundamental components of the industrial machineries recently. For a large amount of industrial machineries, to achieve the goal of high-accuracy and automatic mass-production, their servo control systems usually require the velocity information or even the acceleration information as the feedback signal. Hence, the aim of this thesis is to analyze and evaluate several kinds of velocity and acceleration estimation methods, such that a simple and reliable criterion of choosing appropriate estimation methods in different velocity and acceleration ranges can be provided. In addition, a model identification strategy that is different from the common approach is used in this study, in which it can identify the system model quickly and efficiently. At the last, an AC servo motor with a load is used as the test device to evaluate the performance of various estimation methods.
中文摘要.................................................I
英文摘要................................................II
致謝...................................................III
目錄....................................................IV
圖目錄.................................................VII
表目錄..................................................XI
第一章 緒論..............................................1
1.1 研究動機與目的.....................................1
1.2 文獻回顧...........................................3
1.3 論文架構...........................................3
第二章 運動控制系統架構..................................5
2.1 簡介...............................................5
2.2 伺服馬達的數學模型.................................5
2.2.1 交流伺服馬達的工作原理.........................5
2.2.2 直流伺服馬達的數學模式推導.....................6
2.3 伺服驅動器內部架構................................10
2.3.1 電流迴路......................................11
2.3.2 速度迴路......................................12
2.3.3 位置迴路......................................13
2.4 馬達參數估測策略..................................14
第三章 速度估測法則.....................................18
3.1 以數值方法做速度估測..............................18
3.1.1 傳統轉速估測法................................19
3.1.2 最小平方估測法................................19
3.1.3 泰勒展開式法..................................21
3.2 觀察器............................................23
3.2.1 馬達系統的狀態空間表示法......................23
3.2.2 速度觀察器....................................24
3.2.3 觀察器之數位化................................26
3.2.4 觀察器之設計..................................28
3.3 模糊觀察器........................................29
3.3.1速度觀察器加入模糊控制器.......................29
3.4 卡爾曼濾波器......................................32
3.4.1 卡爾曼濾波器原理..............................33
3.4.2 卡爾曼濾波器演算法............................36
3.5速度估測法則性能分析...............................37
3.5.1 數值方法之分析................................38
3.5.2 觀察器之分析..................................44
第四章 加速度估測法則...................................47
4.1 以數值方法作加速度估測............................48
4.2 觀察器............................................49
4.2.1 加速度觀察器..................................49
4.2.2 模糊觀察器估測加速度..........................50
4.3 低加速度估測器....................................51
4.4 加速度估測法則性能分析............................52
4.4.1 數值方法之分析................................52
4.4.2 加速度觀察器之分析............................54
4.4.3 低加速度估測器之分析..........................56
第五章 實驗與結果分析...................................58
5.1 實驗系統架構......................................58
5.1.1 硬體設備......................................59
5.1.2 軟體設備......................................61
5.2 實驗一:系統參數鑑別實驗..........................62
5.3 實驗二:速度估測實驗..............................67
5.3.1 高轉速時的量測結果............................68
5.3.2 低轉速時的量測結果............................72
5.3.3 極低轉速時的量測結果..........................76
5.4 實驗三:加速度估測實驗............................82
5.4.1 高加速度時的量測結果..........................82
5.4.2 低加速度時的量測結果..........................85
5.5 討論..............................................90
第六章 結論與建議.......................................91
參考文獻................................................93
[1] C. T. Johnson and R. D. Lorenz, “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms,” IEEE Transactions on Industry Applications, vol. 28, no. 6, November/December 1992.
[2] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, February 1992.
[3] R. D. Lorenz and K. W. Van Patten, “High-Resolution Velocity Estimation for All-Digital, ac Servo Drives,” IEEE Transactions on Industry Applications, vol. 27, no. 4, July/August 1991.
[4] Y. Hori, “Robust and Adaptive Control of a Servomotor Using Low Precision Shaft Encoder,” IEEE-IECON’93, November 1993, Hawaii.
[5] Y. Hori, “Ultra-low Speed Control of Servomotor Using Low Resolution Rotary Encoder,” IEEE IECON’95, pp. 615~620, November 1995, Orlando.
[6] S. M. Yang and S. J. Ke, “Performance Evaluation of a Velocity Observer for Accurate Velocity Estimation of Servo Motor Drives,” IEEE Transactions on Industry Applications, vol. 36, no. 1, January/February. 2000.
[7] F. C. Lin and S. M. Yang, “Adaptive Fuzzy Logic-Based Velocity Observer for Servo Motor Drives,” Mechatronics, pp. 229-241, 2003.
[8] R. D. Lorenz, T. A. Lipo and D.W. Novotny, “Motion Control with Induction Motors,” Proceedings of the IEEE, vol. 82, no. 8, August 1994.
[9] J. Yen and R. Langari, Fuzzy Logic Intelligence, Control and Information, Prentice-Hall, 1999.
[10] 中國生產力中心,Fuzzy理論與應用實務,全華科技圖書股份有限公司,1996年。
[11] 李祖聖,Lecture Notes on Fuzzy Logic Control,2002年。
[12] H. W. Kim, J. W. Choi and S. K. Sul, “Accurate Position Control for AC Servomotor Using Novel Speed Estimator,” Proc. IEEE Int. Conf. Industrial Electronics, Control and Instrumentation, pp. 627~632, 1995.
[13] H. W. Kim and S. K. Sul, “A New Motor Speed Estimator Using Kalman Filter in Low-Speed Range,” IEEE Transactions on Industrial Electronics, vol. 43, no.4, August 1996.
[14] 劉家良,適應性卡爾曼濾波器於低轉速之應用,碩士論文,國立成功大學電機工程學系,2003年。
[15] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Technical Report, University of North Carolina at Chapel Hill, 2001.
[16] G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic Systems, 3rd edition Addison-Wesley, 1997.
[17] K. Ogata, Discrete-Time Control Systems, Prentice-Hall, 1987.
[18] A. V. Oppenheim, R. W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 2nd edition Prentice-Hall, 1999.
[19] 楊家輝,Lecture Notes on Digital Signal Processing,2003年。
[20] 唐佩忠,CNC伺服參數調整專家系統(第二期),1993年。
[21] Fanuc AC Servo Unit Maintenance Manual, Fanuc Ltd., 1997.
[22] P. B. Schmidt and R. D. Lorenz, “Design Principles and Implementation of Acceleration Feedback to Improve Performance of dc Drives,” IEEE Transactions on Industry Applications, vol. 28, no. 3, May/June 1992.
[23] S. H. Lee and J. B. Song, “Acceleration Estimator for Low-Velocity and Low-Acceleration Region,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, March 2001.
[24] P. R. Bélanger, “Estimation of Angular Velocity and Acceleration from Shaft Encoder Measurements,” Proceedings of International Conference on Robotics and Automation, Nice, France, May 1992.
[25] F. Janabi-Sharifi, V. Hayward and C.S.J. Chen, “Discrete-Time Adaptive Windowing for Velocity Estimation,” IEEE Transactions on Control Systems Technology, vol. 8, no. 6, November 2000.
[26] 胡家勝,阻抗控制於力覺回饋控制應用之設計與實現,碩士論文,國立成功大學機械工程學系,2003年。
[27] B. C. Kuo, Automatic Control Systems, 7th edition Prentice-Hall, 1995.
[28] 邱奕範,命令及摩擦力前饋控制於工具機之研究,碩士論文,國立成功大學機械工程學系,2002年。
[29] PMC32韌體開發技術手冊ver2.0,工業技術研究院機械工業研究所,2002年。
[30] 惠汝生,自動量測系統—LabView,全華科技圖書股份有限公司,2002年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top