跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張櫸馨
研究生(外文):Jue-Shing Chang
論文名稱:利用光纖光柵及極化分光器架構非同調光頻振幅與偏振狀態之網路編解碼裝置。
論文名稱(外文):Incoherent Spectral Amplitude/Polarization Coder/Decoders Structured with Fiber Grating and Polarization Beam Splitter
指導教授:黃振發黃振發引用關係
指導教授(外文):Jen-Fa Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:67
中文關鍵詞:布雷格光柵正交三元序列頻域極化編碼極化分光器
外文關鍵詞:Polarization Beam SplitterFiber Bragg GratingOrthogonal Ternary SequenceSpectral Polarization Coding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
  利用光可在單模光纖(Single mode fiber, SMF)中以兩個正交極化狀態傳輸的特性,我們提出架構於極化分光器(Polarization beam splitter, PBS)和布雷格光柵(Fiber Bragg grating, FBG)之光分碼多工編/解碼裝置,以實現非同調光源之頻域極化編碼。系統使用者的簽章碼(Signature code)是以Hadamard矩陣來建構,對應於每一使用者之特定簽章碼,配置FBGs的布雷格反射波長並以PBS產生正交的極化狀態(如:垂直極化和水平極化)。
  在接收機解碼端,由於所接收到的訊號中包含不同波長的極化狀態資訊,因此以PBS將其中正交的極化狀態分離並以FBGs取出其布雷格波長所對應之波長,最後以平衡光檢測器依所檢測之極化光強度來判別。由於Hadamard 矩陣為正交矩陣,使得多重擷取干擾(Multiple access interference, MAI)可被消除。此頻域極化編碼相較於同樣以Walsh-Hadamard碼架構之頻域振幅編碼,能有較高的訊號雜訊比,使得同時使用者的數目相對的提高。
  在本論文中,我們提出由Hadamard矩陣所產生之正交三元序列(Orthogonal ternary sequences)做為簽章碼,在使用上述之編/解碼機制的情況下,由於此簽章碼的特性,使得部份的波長被FBGs濾除,因此相較於Walsh-Hadamard碼架構之頻域極化編碼,波長的碰撞減少了,抑制了因光源相位擾動在光檢測器所引致的強度雜訊(Phase induced intensity noise, PIIN),因而可提供更多同時使用者的數目。
  然而,光纖中的雙折射率導致之極化模態色散(Polarization mode dispersion, PMD),不僅使光脈波變寬化並且造成不同頻率極化狀態的擾動,極化模態色散正比於光纖長度的平方根,嚴重限制了傳輸的距離,因此,我們介紹了極化色散補償策略,使得所提出的光頻振幅/偏振之編/解碼架構更為可行。
  Utilizing the advantage that the light can transmit with two orthogonal states of polarization (SOP) in single mode fiber, we propose coder/decoder (codec) structure based on polarization beam splitter (PBS) and fiber Bragg grating (FBG) to implement spectral polarization coding with incoherent optical source in optical code division multiple access system, and address the Hadamard matrix as signature codes. Corresponding to each specific signature code, the FBGs allocate the reflection wavelengths and generate orthogonal SOP (ex. vertical and horizontal SOP) to those wavelengths with PBS.
  At the decoder, the received signal, which include SOP information to each wavelength, is split into two orthogonal SOP with PBS and the reflection and transmission wavelengths according to the Bragg wavelengths of FBGs are launched into balanced photo-detector. Finally, the decision bases on the balanced detected optical power units. Since the Hadamard matrix is an orthogonal matrix, the multiple access interference (MAI) can be eliminated. The signal-to-noise ratio (SNR) of the proposed spectral polarization coding is superior to spectral amplitude coding with Walsh-Hadamard code and results in the numbers of simultaneous active users can be upgrade.
  In this thesis, we present an orthogonal ternary sequences generating from Hadamard matrix and the specific sequences are addressed as the signature codes, the mechanism of codec is similar to above description. Since the characteristic of the signature code, partial wavelengths are filtered out with FBGs. Comparing to spectral polarization coding with Walsh-Hadamard code, the numbers of wavelength collisions are reduced, resulting in the phase induced intensity noise (PIIN) is suppressed at photo-detector, such that the numbers of simultaneous active can be increased.
  However, the birefringence of the optical fiber channel produces the polarization mode dispersion (PMD) effect results in the pulse broadening and states of polarization scrambling for different frequencies. The PMD is proportional to the root of the fiber length, such that the transmission distances are limited. Therefore, the PMD compensation strategy is introduced, and the proposed spectral amplitude/polarization codec can be more feasible.
Chapter 1. Introduction...........................................1
1.1 Classification of OCDMA Schemes...............................2
1.2 Comparisons on OCDMAs.........................................10
1.3 Motivation of the Research....................................12
1.4 Sections Preview..............................................13
Chapter 2. Polarization Effect in Optical Fiber Channel...........15
2.1 Description of Polarized Light................................15
2.2 Polarization Devices in the Proposed OCDMA....................18
2.3 Polarization Mode Dispersion (PMD)............................23
2.4 PMD Compensation..............................................26
Chapter 3. FBG-based Spectral Polarization Coding.................30
3.1 Polarization Coding and Decoding Algorithm....................30
3.2 Round-trip Time Compensation..................................37
Chapter 4. Hybrid Spectral Amplitude/Polarization Coding..........43
4.1 Ternary Sequences from Hadamard Matrix........................43
4.2 Codec Structure with Ternary Sequences........................46
Chapter 5. System Performance Evaluation..........................52
5.1 Phase Induced Intensity Noise.................................52
5.2 Performance Analyses on the Network Codec.....................55
Chapter 6.Conclusions.............................................66
References
[01]. J.A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
[02]. J.A. Salehi and C.A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, August 1989.
[03]. E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[04]. M. Azizoglu, J.A. Salehi and Y. Li, “Optical CDMA via temporal codes,” IEEE Transactions on Communications, vol. 40, no. 7, pp. 1162-1170, July 1992.
[05]. G.C. Yang and W.C. Kwong, “Performance comparison of multiwavelengths CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Communi., vol. 45, no. 11, pp. 1426-1434, November 1997.
[06]. L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical network with increased security,” IEEE J. Lightwave Technol., vol. 14, no. 12, pp. 2636-2646, December 1996.
[07]. H. Fathallah, L.A. Rusch and S. LaRochelle, “Passive optical fast frequency-hop CDMA communication system,” IEEE J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, March 1999.
[08]. S. Kim, K. Yu and N. Park, “A new family of space/wavelength/time spread three- dimensional optical code for OCDMA networks,” IEEE J. Lightwave Technol., vol. 18, no. 4, pp. 502-511, April 2000.
[09]. E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[10]. K.P. Jackson, G. Xaio and H.J. Shaw, “Coherent optical fiber delay-line processor,” Electron. Lett., vol. 22, no. 25, pp. 1335, 1986.
[11]. D.D. Sampson and D.A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation,” Electron. Lett., vol. 26, no. 19, pp. 1550-1552, Sept. 1990.
[12]. R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Optical phase coding for code division multiple access,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, Dec. 1992.
[13]. M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems,” IEEE Transactions on Communications, vol. 42, no. 2, pp.1801-1810, 1994.
[14]. D.V. Sarwate and M.B. Pursley, “Crosscorrelation properties of pseudorandom and related sequences,” Proceedings of the IEEE, vol. 68, no. 5, pp. 593-619, May 1980.
[15]. M.E. Marhic, “Coherent optical CDMA networks,” IEEE/OSA J. Lightwave Technol., vol. 11, no. 5/6, 854-863, May/June 1993.
[16]. D. Sampson, R.A. Griffin, and D.A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” IEEE J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
[17]. J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,”IEEE J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.
[18]. R.A. Griffin, D.D. Sampson and D.A. Jackson, “Coherence coding for photonic code- division multiple access networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1826-1837, September 1995.
[19]. G. J. Pendock and D.D. Sampson, “Capacity of coherence multiplexed CDMA network,” Optics Communication 143, pp.109-117, 1997.
[20]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, 1993.
[21]. M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534 -545, March 1995.
[22]. J.F. Huang, and D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Letter, vol. 12, pp. 1252-1254, Sept. 2000.
[23]. J.A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
[24]. G. Vannucci, “Combining frequency division multiplexing and code division multiplexing for high capacity optical network,” IEEE Network, vol. 3, no. 2, pp. 21-30, March 1989.
[25]. G.J. Pendock and D.D. Sampson, “Noise in coherence-multiplexed optical fiber systems,” Applied Optics, vol. 36 no. 36, December 1997.
[26]. E.D.J. Smith, P.T. Gough, and D.P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett., vol. 31, no.17, pp. 1469-1470, 1995.
[27]. R. Papannareddy and A.M. Weiner, “Performance comparison of coherent light pulse and incoherent broad-band CDMA system,” IEEE Photon. Technol. Letter, vol. 11, no. 12, pp. 1683-1685, December 1999.
[28]. Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001.
[29] L. Nguyen, T. Dennis, B. Aazhang and J.F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett., vol. 31, no.6, pp. 469-470, 1995.
[30]. T. Dennis and J.F. Young, “Optical implementation of bipolar codes,” IEEE J. Lightwave Technol., vol. 28, no. 3, pp. 287-291, March 1999.
[31]. L. Nguyen, T. Dennis, B. Aazhang and J.F. Young, “Experimental demonstration of bipolar codes for optical spectral amplitude CDMA communication,” IEEE J. Lightwave Technol., vol. 15, no. 9, pp. 1647-1653, September 1997.
[32]. S.K. Park, J.W. Park, S.R. Lee, H. Yoon, S.B. Lee and S.S. Choi, “Multiwavelength bi-directional optical crossconnect using fiber Bragg grating and polarization beam splitter,” IEEE Photon. Technol. Letter, vol. 12, no. 7, pp. 398-482, July 2000.
[33]. D.S. Kliger, J.W. Lewis, and C.E. Randall, “Polarized light in optics and spectroscopy ,” Academic Press, 1990.
[34]. M.S. Yataki, D.N. Payne, and M.P. Varnham, “All-fibre polarising beam splitter,” Electron. Lett., vol. 21, pp. 249-251, 1985.
[35]. J.E. Baran and D.A. Smith, “Adiabatic 2x2 polarization splitter on LiNbO3,” IEEE Photon. Technol. Letter, vol. 4, no. 1, pp. 39-40, January 1992.
[36]. M.J. Guy, S.V. Chernikov, J.R. Taylor, and R. Kashyap, “Low-loss fibre Bragg grating transmission fiber based on a fibre polarization splitter,” Electron. Lett., vol. 30, no.18, pp. 1512-1513, September 1994.
[37]. F. Heisman, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” IEEE J. Lightwave Technol., vol. 12, no. 4, pp. 690-699, April 1994.
[38]. D.K.W. Lam, and B.K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, vol. 20, pp. 440-445, 1981.
[39]. G. Meltz, W.W. Morey, and W.H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters, vol. 14, pp. 823-825, 1989.
[40]. A.E. Willner, S.M. Reza Motaghian Nezam, L. Yan, Z. Pan and M.C. Hauer, “Monitoring and control of polarization –related impairments in optical fiber systems,” IEEE J. Lightwave Technol., vol. 22, no. 1, pp. 106-125, January 2004.
[41]. W. Shieh, “Principal states of polarization for an optical pulse,” IEEE Photon. Technol. Letter, vol. 11, no. 6, pp. 39-40, June 1999.
[42]. Q. Lin and G. Agrawal, “Correlation theory of polarization mode dispersion in optical fiber,” J. Optical Society of America, vol. 20, no. 2, February 2003.
[43]. R. Khosravni, S.A. Havstad, Y.W. Song, P. Ebrahimi, and A.E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Letter, vol. 13, no. 12, pp. 1370-1372, December 2001.
[44]. E.D.J. Smith, R.J. Baikie, and D.P. Taylor, “Performance enhancement of spectral- amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, no. 9, pp. 1176-1185, September 1998.
[45]. D.R. Lutz, “A passive fiber-optic depolarizer,” IEEE Photon. Technol. Letter, vol. 4, no. 4, pp. 463-465, April 1993.
[46]. F. Heismann and K.L. Tokuda, “Polarization-independent electro-optic depolarizer,” Optics Letters, vol. 20, no. 9, May 1995.
[47]. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Computer-generated infrared depolarizer using space-variant subwavelength dielectric gratings,” Optics Letters, vol. 28, no. 16, August 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top