跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃欽足
研究生(外文):Huang Chin-Tzwu
論文名稱:序列聯結產品整合式組裝規劃系統之研發
論文名稱(外文):Development of Integrated Assembly Plan Generation Systems for Combinative Group Products
指導教授:賴新一
指導教授(外文):Hsin-Yi Lai
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:118
中文關鍵詞:組裝規劃關聯矩陣排序關係產品族群
外文關鍵詞:liaison matrixprecedence relationshipsproduct familiesassembly sequence plan
相關次數:
  • 被引用被引用:9
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究的重點,在探討群組化產品族群的組裝生產規劃系統與所屬零件的數量、幾何形狀及設備配置變動的高複雜性。其目的在於針對文獻中的方法在實際執行上的一些缺點加以改進,並提出一套較有運算效率、易於檢視與使用電腦化管理的群組化序列聯結產品組裝生產規劃系統,以提供產品生產時組裝規劃基礎資訊的應用。
在研究方法上,本文使用邏輯關聯矩陣(liaison matrix, LM) 建構產品中零件實體接觸連接與功能性質相依的資料庫,及擷取產品組裝時的重要排序關係(precedence relationships, PR),可以利用推論的計算方式產生產品族群的組裝順序規劃集合(assembly sequence plan, ASP)。使用關聯矩陣中零件與零件連接屬性的邏輯化資訊,可以用來分析產品組裝排列關係;其功能相依的邏輯化資訊,可以建構多種類零件之產品組織結構。再利用布林代數規則建構產品組裝時的重要排序關係及製程需要的條件之邏輯化組合。將邏輯關聯矩陣與布林代數排序關係,由電腦程式整合疊代運算,自第一個選取組裝之零件起始,依據邏輯相依的存在關係,循序搜尋具有連接特性之零件並進行系列次組裝的操作,當最後一個零件接合時即完成一個推論的迴路,產生一組合適的組裝規劃集合。經運算後可以篩選出該產品族群於組裝操作時之可行的組裝規劃集合。在本文中提出邏輯的關聯矩陣與布林代數建構排序關係結合的方法,有助於提高合適的產品組織結構與產品最佳化組裝順序的快速產生。
最後,運用本文所發展植基於關聯矩陣與排序關係的組裝順序規劃法(ASP-LMPR)及建立資訊處理的電腦程式於所選用的光感應裝置樣品作系統之實例測試,以功能模組模擬探討及驗證理論模型的正確性及可行性。實際模擬結果,證實本文所提的邏輯化結構與系統化程序的方法,確實提供一個可行且高效率的結構,並可作為產品族群的組裝生產規劃系統之用。又經導入ASP-LMPR方法結構於規則模面的拋光程序規劃系統(mold surfaces data integration, MSDI)為第二個實例進行模擬測試;實際模擬結果,證實本文所提的方法可以推廣應用於解決較複雜的相似工業生產規劃問題。本文的最大貢獻,在於提供一個新的系統化的組裝生產規劃模擬工具與程序,且可以推廣至較多零件與相近似的工業生產規劃問題的處理。
Based on the assembly plans generation of grouped product families complex potential associated with the parts number, geometrical shape and change of the facilities layout are studied. The objective of this research is to propose a new ASP-LMPR method that makes use of a logical liaison matrix (LM) and precedence relationships (PR) of Boolean algebra to establish the framework of the generation system of assembly sequence plan (ASP). The ASP-LMPR is able to analyze the relationships of logic combination, and to determine the feasible (or optimal) assembly plans for the grouped combinative product families. To enhance the rapid identification of the product’s organization suitability and optimal assembly sequence, the liaison matrix and precedence relationships are introduced.
For the sample case that photosensitive illuminate device is represented, the effectiveness of the integrated assembly plan generation are obtained analytically by the computerized generation. The numerical results are presented to illustrate the implementation and the capabilities of the ASP-LMPR. In the case of the mold surfaces data integration (MSDI) for polished process planning, the polished process planning and potential tool- approach directions are systematic and the analysis is computerized. The results show that the logical configurations and systematical procedure of the ASP-LMPR method are examined further by using the logical complex technique of the MSDI associated with the framework of Boolean algebra and liaison matrix. The paper provides a novel systematical assembly plans modeling tool and procedure that can be further extended to accommodate more parts appeared in complicated combinative group products.
目錄
摘要------------------------------------------------------------------------------i
英文摘要----------------------------------------------------------------------- ii
誌謝-----------------------------------------------------------------------------iii
目錄-----------------------------------------------------------------------------iv
表目錄 -----------------------------------------------------------------------viii
圖目錄------------------------------------------------------------------------- ix
符號說明-----------------------------------------------------------------------xi
第一章 緒論------------------------------------------------------------------ 1
1.1 簡介----------------------------------------------------------------- 1
1.2 研究動機 ---------------------------------------------------------- 2
1.3 研究目的 ---------------------------------------------------------- 5
1.4 章節瀏覽 ---------------------------------------------------------- 7
第二章 文獻回顧與本研究的方法架構--------------------------------10
2.1 文獻回顧 --------------------------------------------------------10
2.1.1 直接組裝之方法回顧------------------------------------ 11
2.1.2 拆解或分解組裝之方法回顧--------------------------- 12
2.1.3 圖形表達之方法回顧------------------------------------ 13
2.1.4 矩陣模式表達之方法回顧------------------------------15
2.1.5 組裝的排序關係之文獻回顧---------------------------17
2.1.6 組裝操作的評估因素之文獻回顧-------------------- 17
2.1.7 組裝操作的評估準則之文獻回顧-------------------- 18
2.1.8 產品族群的組裝規劃之方法回顧-------------------- 21
2.2 本研究的方法與假設之提出--------------------------------- 24
2.2.1 本研究的方法 ------------------------------------------- 25
2.2.2 本研究的基本假設 ------------------------------------- 26
第三章 序列聯結產品整合組裝規劃系統的理論與流程28
3.1 系統理論架構之輸入、輸出與流程------------------------- 29
3.1.1 產品特徵定義與系統輸入----------------------------- 31
3.1.2 元件關聯矩陣之建構 --------------------------------- 34
3.1.3 產品族群次組裝之擷取 ------------------------------ 41
3.1.4 組裝順序之產出 --------------------------------------- 46
3.2次組裝的評估與擷取 ------------------------------------------ 49
3.2.1 評估原則 ------------------------------------------------ 50
3.2.2 擷取的方法 --------------------------------------------- 54
3.3組裝排序之產出 ------------------------------------------------ 58
3.3.1 組裝排序的影響因素 ---------------------------------- 59
3.3.2 組裝排序條件的擷取 ---------------------------------- 61
3.3.3組裝排序的產出 ---------------------------------------- 64
3.4 電腦化組裝規劃程序與流程---------------------------------- 67
第四章 實例應用與系統驗證 --------------------------------------70
4.1 光感應照明裝置組裝規劃ASP-LMPR系統------------- 71
4.1.1組裝產品的設計資料的擷取 ------------------------- 71
4.1.2組裝順序的產生 ---------------------------------------- 71
4.1.3次組裝的擷取 ------------------------------------------- 72
4.1.4產品族群的構成 ---------------------------------------- 75
4.1.5組裝順序與產品族群的產生-------------------------- 78
4.1.6產品組裝零件排序順序的建立----------------------- 80
4.1.7最佳組裝順序及合適的產品組織的選擇 --------- 81
4.1.8 ASP-LMPR與其他方法結果的比較---------------- 85
4.2模表研拋加工MSDI製程規劃系統 ---------------------91
4.2.1 MSDI系統的方法架構 ------------------------------- 91
4.2.2 MSDI系統電腦處理之資料流程 ----------------- 100
4.2.3 MSDI系統功能與模擬結果 ----------------------- 103
第五章 結論與建議 ----------------------------------------------- 108
5.1 總結 ------------------------------------------------------- 108
5.2 建議 -------------------------------------------------------110
參考文獻 --------------------------------------------------------------112
附錄A MSDI樣品模型之特徵資料矩陣(D)資料---- 116
附錄B 特徵資料矩陣行號指定的特徵參數說明----117
自述 --------------------------------------------------------------------118

表目錄
表3-1 光感應照明裝置(PID)之零件屬性關聯表------------------ 38
表3-2 PID零件之型式及符號表 ------------------------------------ 44
表3-3 PID可用的組裝順序集合之數量 --------------------------- 48
表4-1 PID符合排序限制條件之可用的組裝順序集合 --------- 74
表4-2 不同組成元件的產品族群 ----------------------------------- 79
表4-3 PID使用排序條件獲得之可行組裝順序規劃數量------- 84
表4-4 選擇組裝操作順序與可生產的產品種類對應表--------- 84
表4-5可定量化表達的主要方法之需求資料結構比較表 ----- 88
表4-6各種主要表達方法之建構資料需求數量比較表 -------- 89
表4-7特徵元件的分類與表達 -------------------------------------- 94
表4-8 特徵資料矩陣行號指定的特徵參數 ---------------------- 99
表4-9 MSDI樣品模型之關聯矩陣(A)資料-----------106
表4-10加工不同水平高程之各種方向的加工零件群107
表4-11加工進給各種方向的加工零件族群 ----------107





圖目錄
圖3-1組裝順序產生之系統研發流程-----------------------32
圖3-2 光感應照明裝置(PID)之零件配置圖----------------37
圖3-3 PID之組裝屬性關聯圖----------------------------------39
圖3-4 燈泡幾何外型圖--------------------------------------------- 45
圖3-5燈罩幾何外型圖---------------------------------------------- 45
圖3-6次組裝及零件可能連接方式的範例---------------------- 57
圖3-7組裝操作困難度說明圖例----------------------------- 65
圖3-8組裝操作穩定度及連接之可靠性說明圖例----- 65
圖3-9 ASP-LMPR 方法電腦處理程序流程圖------------------ 69
圖4-1 產生合適組裝順序流程圖--------------------------------- 73
圖4-2使用次組裝觀點建立之六個元件PID組裝圖-------- 76
圖4-3使用次組裝觀點建立之六個元件PID組裝關聯圖- 77
圖4-4不同方法的零件數目與需求資料因子關係圖------- 90
圖4-5應用實例之模具樣品影像--------------------------- 92
圖4-6 MSDI實例之模具樣品幾何資料------------------ 93
圖4-7基本特徵階層分類的方法流程圖----------------- 96
圖4-8幾何模型的布林代數操作範例-------------------- 97
圖4-9應用實例之模具樣品之模面分割圖------------- 98
圖4-10 MSDI系統的方法流程圖------------------------- 101
圖4-11 MSDI方法程式應用資訊流程圖-------------- 102
1. Bourjault, A., “Contribution à une approach méthodologique de I’assemblage automatisé: Elaboration automatique des séquences opératoires,” Thèse d’état, Université de Franche-Comté, Besancon, France, Nov. 1984.
2. De Fazio, T.L. and Whitney, D.E., “Generation and Consideration of All Assembly Sequences for Assembly System Design,” In Samuel, A.E. (ed.), Engineering Design and Manufacturing Management, Elsevier Science B. V., New York, pp. 71-83, 1989.
3. De Fazio, T.L. and Whitney, D.E., ”Simplified Generation of All Mechanical Assembly Sequences,” IEEE Journal of Robotics and Automation, RA-3 (6), pp.640-658, 1987.
4. Homem de Mello, L.S. and Sanderson, A.C., “Representations of Mechanical Assembly Sequences,” IEEE Transactions on Robotics and Automation, 7(2), pp. 211-227, 1991.
5. Homem de Mello, L.S. and Sanderson, A.C., “A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences,” IEEE Transactions on Robotics and Automation, 7(2), pp. 228-240, 1991.
6. Huang, Y.F. and Lee, C.S.G., “Precedence Knowledge in Feature Mating Operation Assembly Planning,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp.216-221, 1989.
7. Homen de Mello, L.S. and Sanderson, A.C., “AND/OR Graph Representation of Assembly Plans,” IEEE Transactions on Robotics and Automation, 6(2), pp. 188-199, 1990.
8. Wilson, R.H. and Rit, J.F., “Maintaining Geometric Dependencies in an Assembly Planner,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp.890-895, 1990.
9. Wolter, J.D., “A Combinatorial Analysis of Enumerative Data Structures for Assembly Planning,” Proc. of 1991 IEEE Int’l Conf. on Robotics and Automation, pp.611-618, 1991.
10.Thomas, J.P., Nissanke, N. and Baker, K.D., “Boundary Models for Assembly Knowledge Representation,” IEEE Transactions on Robotics and Automation, 12(2), pp. 302-312, 1996.
11.Thomas, J.P. and Nissanke, N., “Assembly Planning for Boundary Models of Objects,” Proc. of 1997 IEEE Int’l Conf. On Symposium on Assembly and Task Planning, pp.146-151, 1997.
12.Wolter, J.D., “On the Automatic Generation of Assembly Plans,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp. 62-68, 1989.
13.Warrts, J.J., Bobeschanscher, N. and Bronsvoort, W.F., “A Semi Automatic Assembly Sequence Planner,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2431-2437, 1992.
14.Floriani, L.D. and Nagy, G., “A Graph Model for Face-to-Face Assembly,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp. 75-78, 1989.
15.Gottipolu, R.B. and Ghosh, K., “Representation and Selection of Assembly Sequences in Computer-aided Assembly Process Planning,” International Journal of Production Research, 35(12), 3447-3465, 1997.
16.Dini, G. and Santochi, M., “Automated Sequencing and Subassembly Detection in Assembly Planning,” Annals CIRP, 41(1), pp. 1-4, 1992.
17.Gottipolu, R.B. and Ghosh, K., “An Integrated Approach to the Generation of Assembly Sequences,” International Journal of Computer Applications in Technology, vol. 8, pp. 125-138, 1995.
18.Zha, X.F., Lim, S.Y.E. and Fok, S.C., “Integrated Knowledge-Based Assembly Sequences Planning,” International Journal of Advanced Manufacturing Technology, 14, pp. 50-64, 1998.
19.Biswas, N.N., Logic Design Theory, Prentice-Hall Publisher, New Jersey, 1993.
20.Sanderson, A.C., Homem de Mello, L.S. and Zhang, H., ”Assembly Sequence Planning,” AI Magazine, 11(1), pp.62-81, 1990.
21.Linn, R.J. and Tu, H.Y., “Automatic Precedence Relationship Extraction for Assembly Sequence Generation,” Journal of Design and Manufacturing, 3, pp. 105-119, 1993.
22.Huang, Y.F. and Lee, C.S.G., “An Automatic Assembly Planning System,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp. 1594-1599, 1990.
23.Rajan, V.N. and Nof, S.Y., “Minimal Precedence Constraints for Integrated Assembly and Execution Planning,” IEEE Transactions on Robotics and Automation, 12(2), pp. 175-186, 1996.
24.Hsu, W., Lee, C.S.G. and Su, S.F., “Feedback Evaluation of Assembly Plans,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2419-2424, 1992.
25.Laperrière, L. and ElMaraghy, H.A., “Planning of Products Assembly and Disassembly,” Annals of the CIRP, 41(1), pp. 5-9, 1992.
26.Kanai, S., Takahashi, H. and Makino, H., “ASPEN: Computer-Aided Assembly Sequence Planning and Evaluation System Based on Predetermined Time Standard,” Annals of the CIRP, 45(1), pp. 35-39, 1996.
27.Laperrière, L. and ElMaraghy, H.A., “Assembly Sequences Planning for Simultaneous Engineering Applications,” International Journal of Advanced Manufacturing Technology”, 9, pp. 231-244, 1994.
28.Marehalli, J. N. and Sturges, R.H., “Practical Passive Assembly: Gripper Design and Assembly Sequence Optimization,” Proceedings of the 1999 ASME Design for Engineering Technical Conferences, Las Vegas, Sep. 12-15, pp. 473-481, 1999.
29.Güngör, A. and Gupta, M., ”Disassembly Sequence Plan Generation using a Branch-and-Bound Algorithm,” International Journal of Production Research, 39(3), pp. 481-509, 2001.
30.Dini, G., Failli, F., Lazerini, B. and Marcelloni, F., “Generation of Optimized Assembly Sequences Using Genetic Algorithms,” Annals CIRP, 48(1), pp. 17-20, 1999.
31.Chen, S.F., and Liao, X.Y., “Stable Assembly Sequence Planning Using A Genetic Algorithm,” Proceedings of the 1999 ASME Design for Engineering Technical Conferences, Las Vegas, Sep. 12-15, pp. 563-569, 1999.
32.Lee, S., “Backward Assembly Planning with Assembly Cost Analysis,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2382-2391, 1992.
33.Ben-Arieh, D., “A Methodology for Analysis Operations’ Difficulty,” International Journal of Production Research, 32(8), pp. 1879-1895, 1994.
34.Graves, S.C. and Redfield, C.H., “Equipment Selection and Task Assignment for Multiproduct Assembly System Design,” The International Journal of Flexible Manufacturing Systems, vol. 1, pp. 31-50, 1988.
35.Stadzisz, P.C. and Henrioud, J.M., “Integrated Design of Product Families and Assembly Systems,” Proc. of 1995 IEEE Int’l Conf. on Robotics and Automation, pp. 1290-1295, 1995.
36.He, D.W. and Kusiak, A., “Design of Assembly Systems for Modular Products,” IEEE Transactions on Robotics and Automation, 13(5), pp. 646-655, 1997.
37.Lai, H.Y. and Huang, C.T., “Integrated Assembly Plan Generation System for Grouped Products Families,” International Journal of Production Research, 41(17), pp. 4041-4061, 2003.
38.Lai, H.Y. and Huang, C.T., “A Systematic Approach for Automatic Assembly Sequence Plan Generation,” International Journal of Advanced Manufacturing Technology”, accepted.
39.Lee, S. and Shin, Y.G., “Assembly Planning Based on Subassembly Extraction,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp. 1606-1611, 1990.
40.Lee, S. and Shin, Y.G., “Assembly Coplanner: Co-operative Assembly Planner Based On Subassembly Extraction,” Journal of Intelligent Manufacturing, 4, pp. 183-198, 1993.
41.Bley, H., Seel, U. and Günther, K.G., “Solving Technical Problems in Assembly System’s Design,” Annals CIRP, 45(1), pp. 11-15, 1996.
42.Goldwasser, M., Latombe, J.C. and Motwani, R., “Complexity Measures Assembly Sequences,” Proc. of 1996 IEEE Int’l Conf. on Robotics and Automation, pp. 1851-1857, 1996.
43.Lai, H.Y. and Huang, C.T., “A Systematic Approach to Mold Surface Data Integration for Polished Process Planning,” submitted.
44.Karinthi, R.R., “An Algebraic Approach to Feature Interactions,” Ph. D. Thesis, Department of Computer Science, University of Maryland, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top