跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文星
研究生(外文):Wen-Hsing Lin
論文名稱:微混合器之暫態流場計算與分析
論文名稱(外文):Calculations and Analyses of Transient Flow Field in Micromixer
指導教授:洪振益洪振益引用關係
指導教授(外文):Chen-I Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:100
中文關鍵詞:計算流體力學微混合器微流道
外文關鍵詞:MicromixerMicro-channelCFD
相關次數:
  • 被引用被引用:3
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微系統中,不同流體混合的時間會大於或等於其彼此反應的時間,在這樣的情況下,混合與反應幾乎是同時發生的,因此混合不完全將會影響到反應的速率,換句話說,流體分子的混合結果決定了整個系統的效率,因此在微型全分析系統、藥物篩檢和生化檢測等相關微裝置中,微混合器可說是一個非常重要的次系統。在我們所熟知的巨觀流場中,可以利用紊流的產生來促使流體混合,然而,在微小尺度下,並無法有效地利用產生紊流的方式來達到混合效果,故本研究期望達到使兩種或多種不同流體在層流的條件下以及適當的時間內,產生理想混合效果之目標。
本研究以計算流體力學之數值模擬方法,探討被動式微混合器之二維暫態流場現象與混合效果。此微混合器由漸縮噴嘴、混合室與回饋流到所組成,藉由兩側回饋流道出口位置之偏移量,使流場產生彎曲以及渦流的現象來達到混合之目的;此外將更進一步於此微混合器內加入薄板,探討此薄板對流場及混合效率的影響,其計算模擬結果亦確實提升。最後綜整本研究所計算、分析、討論之結果,以提供初步且重要的數值運算與分析,作為相關領域設計者之參考文獻。
In the micro system, the mixing time of the different fluids is larger than or equal to its reaction time. In this situation, mixing and reaction is happening nearly synchronically. Thus, incomplete mixing would affects reaction velocity and the mixing effect of fluid molecules decides the overall system efficiency. Therefore, the micromixer is a very important sub-system in the microfluidic devices. In the macro scale flow field, we could produce the turbulence to advance the fluid mixing. However, we could not use the way that produces the turbulent flow to enhance the mixing effect in very small scale. The goal of this research is to make two or more different fluids have high mixing performance under the laminar flow condition in the period of time.
This research uses Computational Fluid Dynamics method to simulate the transient flow field phenomenon and mixing effect in the passive micro mixer. This micro mixer is composed of a convergent nozzle, a mixing zone and feedback side-channels. The offset of the two feedback side-channels outlet derive vortexes to change position and magnitude. This phenomenon would enhance the mixing effect. In addition, we join the thin plates in this micro mixer and discuss the influence of the flow field and mixing efficiency. We collated the results of this research and provided the basic, important numerical computation data and analysis to the related researchers for references in the future.
提要......................................................I
Abstract.................................................II
誌謝....................................................III
目錄.....................................................IV
表目錄...................................................VI
圖目錄..................................................VII
符號說明.................................................XI

第一章、導論..............................................1
1.1 前言..................................................1
1.2 研究動機與目的........................................4
1.3 文獻回顧..............................................5
1.4 本文架構.............................................11

第二章、理論基礎.........................................12
2.1 基本假設.............................................14
2.2 統御方程式...........................................15
2.3 無因次分析...........................................16
2.4 混合效率.............................................18

第三章、數值方法.........................................20
3.1 有限體積法...........................................20
3.1.1 統御方程式之離散...................................21
3.1.2 速度與壓力之關聯性.................................24
3.1.3 SIMPLEC演算法......................................27
3.2 邊界條件.............................................28
3.3 收斂標準.............................................29

第四章、結果與討論.......................................30
4.1 網格測試.............................................30
4.1.1 結構性網格測試.....................................30
4.1.2 非結構性網格測試...................................31
4.2 單一循環裝置.........................................32
4.2.1 單純之Y型微混合器..................................32
4.2.2 加入漸縮噴嘴與回饋流道之Y型微混合器................32
4.2.3 加入漸縮噴嘴、回饋流道與一薄板之Y型微混合..........35
4.2.4 加入漸縮噴嘴、回饋流道與兩薄板之Y型微混合..........38
4.3 雙重循環裝置.........................................40

第五章、結論與未來展望...................................42
5.1 結論.................................................42
5.2 未來展望.............................................43

參考文獻.................................................44
自述....................................................100
[1]Manzs, A., Graber, N., and Widmer, H. M., “Miniaturized Total Analysis Systems:A Novel Concept for Chemical Sensing”, Sensors and Actuators, B1, 244-248, 1990.

[2]Xu Zhu, and Enu Sok Kim, “Microfluidic Motion Generation with Acoustic Waves”, Sensors and Actuators A, Vol.66, 355-360, 1998.

[3]Vibhu Vivek, Yi Zeng, and Eun Sok Kim, “Novel Acoustic-Wave Micromixer”, The 13th Annual International Conference on Micro Electro Mechanical Systems, MEMS 2000, 668-673, 2000.

[4]Deshmukh, A. A., Liepmann, D., and Pisano, A. P., “Continuous Micromixer with Pulsatile Micropumps”, IEEE Workshop on Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 73-76, 2000.

[5]Deshmukh, A. A., Liepmann, D., and Pisano, A. P., “Characterization of a Micro-Mixing, Pumping, and Valving System”, Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Transducers’01), Munich, 950-953, 2001.

[6]Evans, J., Liepman, D., and Pisano, A. P., “Planar Laminar Mixer”, Proceedings of IEEE MEMS Symposium, 96-101, 1997.

[7]Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M., and Maeda, R., “Ultrasonic Micromixer for Microfluidic Systems”, Sensors and Actuators A, Vol.93, 266-272, 2001.

[8]Tsai, J. H., and Lin, L., “Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump”, Sensors and Actuators A, Vol.97-98, 665-671, 2002.

[9]Lu, L. H., Ryu, K. S., and Liu, C., “A Magnetic Microstirrer and Array for Microfluidic Mixing”, Journal of Microelectromechanical Systems, Vol.11, No.5, 462-469, 2002.

[10]Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Micro Mixer with Fast Diffusion”, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, 248-283, 1993.

[11]Schwesinger, N., Frank, T., and Wurmus, H., “A Modular Microfluid System with an Integrated Micromixer”, Journal of Micromechanics and Microengineering, Vol.6, 99-102, 1996.

[12]Branebjerg, J., Gravesen, P., Krog, J. P., and Nielsen, C. R., “Fast Mixing by Lamination”, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, 441-446, 1996.

[13]Knight, J. B., Vishwanath, A., Brody, J. P., and Austin, R. H., “Hydrodynamic Focusing on a Silicon Chip:Mixing Nanoliters in Microseconds”, Physical Review Letters, Vol.80, No.17, 3863-3866, 1998.

[14]Andreev, V. P., Koleshko, S. B., Holman, D. A., Scampavia, L. D., and Christian, G. D., “Hydrodynamics and Mass Transfer of the Coaxial Jet Mixer in Flow Injection Analysis”, Analytical Chemistry, Vol.71, No.11, 2199-2204, 1999.

[15]Veenstra, T. T., Lammerink, T. S. J., Elwenspoek, M. C., and van den Berg, A., “Characterization Method for a New Diffusion Mixer Applicable in Micro Flow Injection Analysis Systems”, Journal of Micromechanics and Microengineering, Vol.9, 199-202, 1999.

[16]Koch, M., Witt, H., Evans, A. G. R., and Brunnschweiler, A., “Improved Characterization Technique for Micromixers”, Journal of Micromechanics and Microengineering, Vol.9, 156-158, 1999.

[17]Erbacher, Ch., Bessoth, F. G., Busch, M., Verpoorte, E., and Manz, A., “Towards Integrated Continuous-Flow Chemical Reactors”, Mikrochimica Acta, Vol.131, 19-24, 1999.

[18]Bing, H., Brian, J. B., Xiang, Z., Roujian, Z., and Fred, E. R., “A Picoliter-Volume Mixer for Microfluidic Analytical Systems”, Analytical Chemistry, Vol.73, 1942-1947, 2001.

[19]Bertsch, A., Heimgartner, S., Cousseau, P., and Renaud, P., “3D Micromixers – Downscaling Large Scale Industrial Static Mixers”, The 14th IEEE Conference on Micro Electro Mechanical Systems, MEMS2001, 507-510, 2001.

[20]王克勤, “新型微混合器之設計與流場分析”, 國立成功大學機械工程研究所碩士論文, 2002.

[21]Jones, S. W., Aref, H., “Chaotic Advection in Pulsed Source-Sink Systems”, Journal of Fluid Mechanics, Vol.31, 469-485, 1988.

[22]Jones, S. W., Thomas, O. M., Aref, H., “Chaotic Advection by Laminar Flow in a Twisted Pipe”, Journal of Fluid Mechanics, Vol.209, 335-357, 1989.

[23]Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., “Passive Mixing in a Three-Dimensional Serpentine Microchannel”, Journal of Microelectromechanical Systems, Vol.9, No.2, 190-197, 2000.

[24]Johnson, T. J., Ross, D., and Locascio, L. E., “Rapid Microfluidic Mixing”, Analytical Chemistry, Vol.74, 45-51, 2002.

[25]Strook, A. D., Dertinger, S. K. W., Ajdari, A., Mezic I., Stone, H. A., and Whitesides, G. M., “Chaotic Mixer for Microchannels”, Science, Vol.295, 647-651, 2002.

[26]Strook, A. D., and Whitesides, G. M., “Controlling Flows in Microchannels with Patterned Surface Charge and Topography”, Accounts of Chemical Research, Vol.36, No.8, 597-604, 2003.

[27]陳志堅, “微混合器的混合特徵及最佳化設計之模擬分析”, 科儀新知, Vol.24, 62-70, 2003.

[28]Cussler, E. L., Diffusion Mass Transfer in Fluid Systems, New York:Cambridge University Press, 1984.

[29]CFD Research Corporation, “CFD-ACE(U) User Manual”, CFD-ACE(U) WebHelp 5.10, 2003.

[30]Van Doormaal J. P., Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol.7, 147-163, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top