跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/23 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕寬
研究生(外文):I-Kuan Lin
論文名稱:三维微結構製程技術研究
論文名稱(外文):Study on Three-Dimensional Micro Structures Processing Technologies
指導教授:陳國聲
指導教授(外文):K-S Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:138
中文關鍵詞:3D微結構自我組裝電子束微影奈米壓印
外文關鍵詞:3D microstructureself-assembly processnanoimprintingelectron-beam lithography
相關次數:
  • 被引用被引用:6
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
  近年來微機電技術已逐漸發展成熟,其商品及功能需求也漸漸邁向多元化,二維微結構已逐漸無法滿足設計上的需求,因此微機電系統在未來的設計以及應用,將與三維微結構製程技術的能力息息相關。本文對三维微機電製程技術的研究,主要分為兩大部分,第一部分對光阻表面張力自動組裝技術做研究,以及第二部份對電子束微影技術搭配奈米壓印技術,直接加工製作3D微結構做研究。在本文的第一部分,我們利用2D的半導體製程製作微結構,並且經過加熱BCB光阻使其產生回熔,將微平板結構抬升起來,成功地自動組裝成3D微結構。而我們也改變光阻的幾何尺寸,研究討論光阻的幾何尺寸與微平板抬升角度的關係,以作為設計上的參考依據。在本文的第二部分,我們利用電子束微影技術在SU-8光阻上,直接加工製作3D微結構,並討論其曝光反應機制。而由於電子束在對於光阻進行曝光時會因為電子束的鄰近效應問題,使得負型光阻曝光後的形狀形成一個特殊的3D輪廓,所以我們發展建立一套電子束微影模型,藉由對核心函數之線性操作,可模擬預測經由電子束微影後的負型光阻3D微結構表面輪廓,作為我們是否需要修正製程參數的依據。最後我們可將電子束微影技術結合奈米壓印技術,利用電子束微影技術在SU-8光阻上製作微結構,直接應用於奈米壓印製程上,作為高分子微結構模仁,可在NEB光阻底材上壓印獲得與SU-8微結構模仁相反的圖案。我們可再利用PDMS對NEB光阻底材進行鑄模製程,如此可達到大量製作微結構的效果,以改善電子束微影技術製作緩慢的缺點。
  With the rapid growth in RF, Optical, and Bio MEMS industries, three-dimensional microfabrication technologies become more important than ever. In this thesis, the process development and parameter sensitivities of two types of 3D fabrication technologies, namely self-assembly process and electron-beam lithography (EBL) based nanoimprinting lithography (NIL), are discussed. For the study on self-assembly process, the current analytical model, which based on solder reflow, has been proven to be inadequate, and the effect of fabrication process parameters must be experimentally investigated. In this thesis, a commonly used negative photoresist, BCB, is selected as the primary target for study. The effect of the dimension and process parameters such as temperature and time period for reflow on lifting angle, which is a critical performance index of the self-assembly process, are experimentally investigated. The results should be useful for optimizing process design for optical and RF MEMS devices such as optical scanners. For the study on electron-beam lithography based nanoimprinting, a novel fabrication process has been developed by using EBL to create 3D microstructures on Su-8 resists as primary molds for subsequent nanoimprinting (NIL) applications. The relationship among the spatial distribution of electron beam irradiation and the spot size and the dosage of irradiation are firstly experimentally determined and a mathematical model is subsequently proposed to describe such a relationship to depict the EBL process using a mathematical manner for the purpose of process design. Experiments are performed to validate this model. Once the model is established, one can convert the desired 3D geometry to a series of EBL fabrication process parameters to create the primary molds and subsequently reproduced by nanoimprinting techniques. Experimental study validates the feasibility of this proposed method and this should be very useful for creating sub-micrometer level 3D microstructures such as micro channels or lens.
目錄

摘要.................................I
Abstract............................II
致謝................................IV
目錄.................................V
圖目錄..............................IX
表目錄.............................XIV

第一章 緒論..........................1
1.1 前言 ...........................1
1.2 3D微結構的重要性與應用..........1
1.3 文獻回顧........................5
1.4 研究動機........................7
1.5 本文架構.......................10

第二章 表面張力自動組裝技術........11
2.1 前言 11
2.2 鉛錫合金表面張力自動組裝技術...12
2.3 光阻表面張力自動組裝技術.......15
2.4 模型分析.......................19
2.4.1 幾何模型.....................19
2.4.2 表面能模型...................21
2.5 光阻表面張力自動組裝技術的問題......22
2.6 結論 ...............................24

第三章 表面張力自動組裝3D微結構之設計製作.....25
3.1 實驗設計..................................25
3.2 實驗製程..................................29
3.2.1 實驗藥品與設備..........................29
3.2.2 製程步驟................................32
3.3 實驗遭遇到的困難..........................37
3.4 結果討論..................................43
3.4.1 光阻表面張力自動組裝3D微結構............43
3.4.2 殘留應力造成微平板結構的翹曲 .........44
3.4.3 光阻幾何尺寸對微平板抬升角度之關係......46
3.4.4 光阻回熔機制............................46
3.5 結論......................................49

第四章 電子束微影技術.........................50
4.1 電子束微影系統............................50
4.1.1 電子光學圓柱............................52
4.1.2 電子束源................................53
4.1.3 機械平台................................54
4.1.4 控制系統................................55
4.2 電子束鄰近效應............................56
4.3 電子束微影過程之模擬......................59
4.3.1 蒙地卡羅法..............................59
4.3.2 分析法..................................62
4.3.3 近似分析函數............................66
4.4 電子束微影技術製作3D微結構的構想..........67
4.5 結論......................................69

第五章 電子束微影製作3D微結構及模型建立.......70
5.1 前言......................................71
5.2 實驗......................................72
5.2.1 實驗藥品與設備..........................72
5.2.2 實驗步驟................................73
5.2.3 實驗結果於討論..........................74
5.3 模型建立..................................80
5.4 模型驗證與討論............................82
5.5 結論......................................86

第六章 3D微結構奈米壓印.......................87
6.1 前言......................................88
6.2 文獻回顧..................................88
6.3 實驗製程..................................93
6.3.1 實驗藥品與設備..........................94
6.3.2 模仁製作................................95
6.3.3 奈米壓印................................99
6.3.4 PDMS微結構製作.........................102
6.4 結果與討論...............................104
6.4.1 新型模仁製作...........................104
6.3.2 微結構圖形重現性.......................105
6.3.3 脫模效果...............................107
6.5 結論.....................................107

第七章 結論及未來展望........................109
7.1 本文歸納.................................109
7.2 本文結論.................................110
7.3 本文貢獻.................................112
7.4 未來工作與展望...........................113

參考文獻......................................115
附錄一 氧化擴散及低壓沉積系統................122
附錄二 旋轉塗佈機............................123
附錄三 光罩對準機............................125
附錄四 反應離子蝕刻機........................126
附錄五 超臨界二氧化碳乾燥機..................127
附錄六 電子束直寫系統........................128
附錄七 奈米壓印系統..........................129
附錄八 光阻表面張力自動組裝3D微結構之製作流程.....130
附錄九 電子束微影製作3D微結構之製作流程...........133
附錄十 3D奈米壓印製作流程.........................135
附錄十一 PDMS鑄模製作流程.........................136
附錄十二 電子束微影之製程參數.....................137
[1] G. T. A. Kovacs, Micromachined Transducers, McGraw-Hill, New York, 1998.
[2] S. D. Stenturia, Microsystem Design, Kluwer Academic, Boston, 2001.
[3] 美商Iolon公司網站, http://www.iolon.com/literature.html.
[4] Y. Fu, and N. K. A. Bryan, ‘‘Investigation of integrated diffractive -refractive microlens microfabricated by focused ion beam,’’ Journals of the American Institute of Physics, vol. 71, no. 6, pp. 2263-2266, 2000.
[5] B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, ‘‘Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,’’ Journal of microelectromechanical system, vol. 13, pp.113-120, 2004.
[6] G. M. Rebeiz, RF MEMS: Theory, Design and Technology, John Wiley & Sons, New Jersey, 2003.
[7] T. Ebefors, E. Kälvesten, and G. Stemme, ‘‘Three dimensional silicon triple-hot wire anemometer based on polyimide joints,” Proceeding of the IEEE MEMS’98 Workshop, pp. 93-98, 1998.
[8] L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud, ‘‘Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic,’’ International Conference on Solid State Sensors and Actuators, vol. 2, pp. 1419-1422, 1997.
[9] T. Nyberg, F. Zhang and O. Inganäs, “Macromolecular nanoelectronics,” Current Applied Physics, vol. 2, pp.27-31, 2002.
[10] C.S. Lin, W. Z. Wu, Y. L. Lay, and M.W. Chang, ‘‘A digital image -based measurement system for a LCD backlight module,’’ Optics & Laser Technology, vol. 33, pp. 499-505, 2001.
[11] R. Yeh, E. J. Kruglick, and K. S. J. Pister, “Surface Micromachined components for articulated microrobots,” Journal of Microelectromechanical Systems, vol. 5, pp. 10-17, 1996.
[12] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface micromachined micro-xyz stages for free-space microoptical bench,” IEEE Photonics Technology Letters, vol. 9, no.3, pp. 345-347, 1997.
[13] S. Reyntjens, and R.Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material,” Journal of Micromechanics and Microengineering, vol.10, pp. 181-188, 2000.
[14] T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Journal of Microelectromechanical Systems, vol. 6, no. 1, pp. 10-17, 1997.
[15] Y. C. Tai, L. S. Fan, and R. S. Muller, “IC-processed micro-motors: design, technology, and testing,” Proceeding of the IEEE MEMS’89 Workshop, pp.1-6, 1989.
[16] M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe and R. S. Muller, “Micromirrors for adaptive-optics arrays,” The 11th International Conference on Solid-State Sensors and Actuators, pp.1290-1293, 2001.
[17] K. F. Harsh, V. M. Bright, Y.C. Lee, ‘‘Solder self-assembly for three-dimensional microelectromechanical systems,’’ Sensors and Actuators, vol. 77, pp.237-244, 1999.
[18] R. R. A. Syms, ‘‘Surface tension powered self-assembly of 3-D micro-optomechanical structures,’’ Journal of Microelectromechanical Systems, vol. 8, no. 4, pp.448-455 , 1999.
[19] V. Kaajakari, and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” International Conference on Solid-State Sensors and Actuators, pp. 212-215, 1999.
[20] 郭晉良, 準分子雷射加工微形3D微結構, 國立成功大學機械工程研究所碩士論文, 2002.
[21] H. Hocheng, C. T. Pan, and C. C. Cheng, ‘‘Formation of Microlens by Reflow of Dual Photoresist,’’ Jpn. J. Appl. Phys, vol. 42, pp. 4044-4047, 2003.
[22] 陳宣克, 電子束微影製作三維非平面結構及結構表面改質, 國立中央大學化學工程與材料工程研究所碩士論文, 2003.
[23]荷蘭公司Institut für Mikrotechnik Mainz GmbH 網頁http://www.imm-mainz.de/products/lens.html4.
[24] R. R. A. Syms, ‘‘Equilibrium of hinged and hingeless structures rotated using surface tension force,’’ Journal of Microelectromechanical System, vol.4, no. 4, pp.177-184, 1995.
[25] 何亦平, 微結構自組裝技術之研究, 國立清華大學動力機械工程研究所碩士班, 2002.
[26] 范姜國皓, 自我組裝鏡面旋轉式光通訊開關, 國立清華大學動力機械工程研究所碩士班, 2003.
[27] M. M. Alkaisi, W. Jayatissa, and M. Konijn, “Multilevel Nanoimprint Lithography,” Current Applied Physics, vol. 4, no.2-4, pp. 111-114, 2004.
[28] T. Nyberg, F. Zhang, O. Inganäs, “Macromolecular nanoelectronics,” Current Applied Physics, vol. 2, no.1, pp. 27-31, 2002.
[29] A. Lebib, M. Natali, S. P. Li, E. Cambril, L. Manin, Y. Chen, H. M. Janssen, and R. P. Sijbesma, “Control of the critical dimension with a trilayer nanoimprint lithography procedure”, Microelectronic Engineering, vol. 57-58, pp. 411-416, 2001.
[30] T. A. McMahon and J. T. Bonner, On Size And Life, Scientific American Books, New York, 1983.
[31] R. R. A. Syms, ‘‘Equilibrium of hinged and hingeless structures rotated using surface tension forces,’’ Microelectromechanical Systems, vol. 4, no. 4, pp.177-184, 1995.
[32] R. R. A. Syms, ‘‘Self-assembly of three-dimensional microstructures using rotation by surface tension forces,’’ Electronics Letters, vol. 29, no. 8, pp.662-664,1993.
[33] K. F. Harsh, and Y.C. Lee, ‘‘Modeling for solder self-assembly MEMS,’’ Proceedings of the International Society for Optical Engineering , vol. 3289, 1998.
[34] P.W. Green, R. R. A. Syms, E. M. Yeatman, ‘‘Demonstration of Three-dimensional Microstructure Self-Assembly,’’ Journal of Micro-electromechanical Systems, vol. 4, no. 4, pp. 170-176, 1995.
[35] K. F. Harsh, V. M. Bright, and Y.C. Lee, ‘‘Study of Micro-Scale Limits of Solder Self-Assembly for MEMS,’’ Electronics and Components Technology Conference, pp. 1690-1695, 2000.
[36] K. F. Harsh, R. S. Irwin, and Y.C. Lee, ‘‘Solder self-assembly for MEMS,’’ Proceedings of the 44th International Instrumentation Symposium, 1998.
[37] B. McCarthy, V. M. Bright, and J. A. Neff, ‘‘A solder self-assembled large angular displacement torsional electrostatic micromirror,’’ Micro Electro Mechanical Systems, pp. 499-502, 2002.
[38] R. R. A. Syms, ‘‘3D micro-optomechanical devices by surface tension powered self-assembly,’’ Microengineering in Optics and Optoelectronics, pp. 4/1-4/6, 1999.
[39] R. R. A. Syms, ‘‘Surface tension powered self-assembly of 3-D micro-optomechanical structures,’’ Microelectromechanical Systems, vol. 8, no. 4, pp. 448-455, 1999.
[40] R. R. A. Syms, ‘‘Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives,’’ Photonics Technology Letters, vol. 12, no. 11, pp. 1519-1521, 2000.
[41] 謝清霖, BCB光阻再流動特性探討及其應用, 國立成功大學造船暨船舶工程研究所碩士論文, 2003.
[42] K. A. Brakke, Surface Evolver Meanual: version 2.01, University of Minnesota.
[43] 美國Dow公司網頁:http://www.dow.com/ cyclotene /lit.htm
[44] R. L. Alley, R. T. Howe and K. Komvopoulos, “The Effect of Release-Etch Processing on Surface Microstructure Stiction”, International Conference on Solid State Sensor and Actuator Workshop, P. 202-207, 1992.
[45] 張俊彥, 鄭晃忠, 積體電路製程及設備技術手冊, 中華民國電子材料與元件協會, 1997.
[46] H. C. Pfeiffer, ‘‘Variable spot shaping for e-beam lithography,’’ Journal of vacuum Science and Technology, vol. 15, no. 3, pp. 887-890, 1978.
[47] 郭政達, 廖明吉, ‘‘先進電子束微影系統設備在特大型積體電路的應,’’科學發展月刊, 第28卷, 第3期,2000
[48] 邱燦賓, 施敏, ‘‘電子束微影技術,’’ 科學發展月刊, 第28卷, 第6期, 2000.
[49] 施錫龍, ‘‘電子束晶圓步進系統簡介,’’ 電子月刊, 第二卷, 第二期, 1996.
[50] 劉正財, 電子束鄰近效應的校正與具鰭狀通道之SOI場效電晶體製作及研究, 國立交通大學電機資訊學院碩士論文, 2003.
[51] L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to Microlithography, American Chemical Society, Washington, 1994.
[52] 邱燦賓, ‘‘電子束微影技術之鄰近效應修正,’’ 毫微米通訊, 第七卷, 第三期, 2000.
[53] 徐俊成, 化學微縮技術應用於電子束微影製程與電子束阻劑線寬變異原因及其微波消化效率之探討, 國立清華大學原子科學研究所碩士論文, 2002.
[54] H. Eisenmann, T. Waas, Hartmann, ‘‘PROXECCO-proximity effect correction by convolution,’’ Journal of vacuum Science and Technology, vol. 11, no. 6, pp.2741-2745, 1993.
[55] A. A. Kumar, M. Alagar and R. M. V. G. K. Rao, ‘‘Synthesis and characterization of siliconized epoxy-1,3-bis(maleimido)benzene intercrosslinked matrix materials,’’ Polymer, vol. 43, no. 3, pp. 693-702, 2002.
[56] W. G. Kim and J. Y. Lee, ‘‘Contributions of the network structure to the cure kinetics of epoxy resin systems according to the change of hardeners,’’ Polymer, vol. 43, no. 21, pp. 5713-5722, 2002.
[57] K. Mimura and H. Ito, ‘‘Characteristics of epoxy resin cured with in situ polymerized curing agent,’’ Polymer, vol. 43, no. 21, pp. 7559-7566, 2002.
[58] S. Y. Chou, R. K. Peter and J. R. Preston, ‘‘Imprint of Sub-25 Vias and Trenches in polymers,’’ Appl. Phys. Lett., vol. 67, no.21, pp. 3114-3116, 1995.
[59] S. Y. Chou and Z. Lei, ‘‘Lithography Induced Self-Assembly of Periodic Polymer Micropillar Arrays.’’ J. Vac. Sci. Technol., vol. 17, no. 6, pp. 3197-3202, 1999.
[60] K. Pfeiffer, et al., ‘‘Polymer Stamps for Nanoimprinting,’’ Microelectronic Engineering, vol. 61-62, pp.393-398, 2002.
[61] F. Gottschalch, et al., ‘‘Polymer Issue in Nanoimprinting technique,’’ Solid-state Electronics, vol. 43, pp.1079-1083, 1999.
[62] Y. Xia and G. M. Whitesides, ‘‘Soft Lithography,’’ Angew. Chem. Int. Ed., vol. 37, pp.551-575, 1998.
[63] Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu and S. Y. Chou, ‘‘Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,’’ Appl. Phys. Lett., vol. 83, no. 21, pp.4417-4419, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top