跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宜寧
研究生(外文):Yi-Ning Chen
論文名稱:自動組裝式微奈米開關系統之研發
論文名稱(外文):Development of Self-Assembled Micro-Nano-Switch Systems
指導教授:賴新一
指導教授(外文):Hsin-Yi Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:97
中文關鍵詞:自組裝奈米開關量子理論
外文關鍵詞:self-assemblednano-switchquantum theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  近十年來DDI(DNA-directed Immobilization)技術及奈米科技的發展,利用具特異選擇性之連結媒介,將奈米微粒連結到固體基材上以建構奈米級結構的技術,如奈米開關,已獲得科學界的重視。而利用奈米開關技術所研發的電子式檢測晶片,促使原本需大量檢體以及冗長檢測過程得以改進,因此高分子微結構檢測工作效率大為提升(如DNA檢測);但由於檢測用奈米微粒之高表面能,使得微粒於晶片上覆蓋率過低,造成開關結構過於鬆散,檢測時所量測到的訊號不佳等問題未獲解決,因此目前為止該項技術所研發的檢測晶片仍處於實驗階段未能普及;另外奈米開關之導電特性皆經由實際實驗量測所得,無法快速地掌握其導電特性,加上傳統傳導率預估公式並未考量微粒間電場增強對導電特性的影響,因此本文擬建構一套有系統的理論分析方法,以便掌握自組裝開關的物理特性。
  為解決上述問題,本文首先以微觀的方式探討微粒間作用勢能,並且考量系統參數對自組裝過程的影響,以估算開關結構上微粒的數目及微粒於開關上的排列間距;接著以量子理論為基礎探討電子在奈米開關上量子傳輸的、電子穿越能量障礙的傳導率等機制,並透過建立開關電導模型以了解電導及電流與電壓之間的關係,作為開關電導理論的分析方法以便估算微粒排列間距及微粒間電場對開關傳導率的影響;而由本文所建立的電導模型研究發現,當微粒極為靠近時,微粒間電場會有增強的情況產生並且對微粒間的傳導率造成相當大的影響;
  將本文理論與文獻資料進行比對後發現,利用本文所建立的理論模型及電腦模擬系統,可達到快速估算系統參數的目的;而利用開關結構周圍電位模型預估開關傳導率也證實較傳統方式為佳,同時也印證了本文理論之可行性與精確性。而將本文理論應用於開關技術所研發的檢測晶片上,改善開關傳導率,可作為開關電流訊號之估算準則及檢測晶片設計上之用。
  Nano-devices are building blocks for creating new technology. Nano-devices possess many distinct characteristics including high sensitivity, high speed, easy accommodation and great capacity. These characters make them very popular and so as to be adopted in various medical, communication and transportation areas. At present, either the lithographic process of MEMS technology, or atoms/molecules manipulations using the STM (scanning tunneling microscope) are used to build devices in nano-scale. Dedicated equipments for processes at quantum level are usually highly expensive. Thus, the fabrication of a device with size smaller than 100nm is complicated and costly. However, in recent years a new approach, named DDI, has emerged as a good alternative. In this new approach, scientists employed adhesive media to form nano-scale target devices of specific shapes. Although this new technique looks very promising, it has not been ready for standardization. The lack of a complete process model is the major obstacle.
  To alleviate the problem, this project proposes a self-assembled switching model derived by using the concepts of quantum mechanics and the theory of molecular dynamics. The process to self-assemble nano-probes into a nano-switch is characterized by using the simulation tool of molecular dynamics. The quantum theory is used to study the electron quantum-transmission effect on the nano-switch. By calculating the transmission probability of electrons through the potential barrier, the associated conductance and relation between voltage and current can be estimated. Once the self-assembled switch and electronic transmission models are established, the structure of nano-switch and the transmission rate of electrons can be investigated.
  A prototype experimental model is constructed to verify the proposed modeling procedure via numerical simulation. The results are used to come up with design guidelines for various nano-switch applications. The numerical experiments presented in the thesis indicate that the proposed method and associated modeling procedure are feasible, efficient and accurate for design and analysis of general-purpose nano-switches.
目錄
中文摘要...............................................I
英文摘要..............................................II
誌謝.................................................III
目錄..................................................IV
圖目錄...............................................VII
表目錄.................................................X
符號說明..............................................XI

第一章 緒論
1.1 研究動機...........................................1
1.2 研究目的...........................................3
1.3 研究方法...........................................4
1.4 章節瀏覽...........................................6

第二章 文獻回顧與研究流程
2.1 本研究相關文獻回顧.................................7
2.1.1 以分子動力理論進行自組裝之研究回顧.............7
2.1.2 DDI技術在晶片及奈米開關上之應用回顧............9
2.1.3 奈米線在量子傳輸及開關效率估算之研究回顧......10
2.1.4 微粒間電導及開關傳導率修正之研究回顧..........11
2.2 本研究基本假設與流程..............................12
2.2.1 基本假設......................................12
2.2.2 研究流程......................................13

第三章 建立奈米微粒自組裝開關之結構與電導模型
3.1 建立自組裝奈米開關結構模型........................16
3.1.1 訂定自組裝奈米開關結構尺寸....................17
3.1.2 影響奈米開關自組裝過程之系統參數探討..........21
3.1.3 建立奈米微粒自組裝勢能模型....................22
3.1.4 以勢能模型建立奈米微粒自組裝動態方程..........29
3.2 建立自組裝奈米開關電導模型........................31
3.2.1微粒間矩形能量障礙的建立.......................31
3.2.2 計算電子穿越矩形能障之穿透係數與反射係數......34
3.2.3 推估電子通過奈米開關之傳導率..................40
3.2.4 推估傳導率與奈米開關之電導、電流及電壓關係....41
3.3 建立自組裝奈米開關整合及微觀修正模型..............43
3.3.1 微觀探討電場對奈米開關傳導率之影響............43
3.3.2 整合奈米開關結構與電導模型....................56
3.3.3 完整電腦估算流程..............................59

第四章 自組裝奈米開關之模擬與結果印證
4.1 自組裝開關結構模型之模擬比對與印證................63
4.2 自組裝開關結構參數調控及改善......................71
4.3 自組裝開關電導模型之模擬比對與改善................76
4.4 開關電流-電壓關係及傳導率之比對與改善.............79
4.5 應用例:奈米開關式檢測晶片之效率評估與改善.........83

第五章 結論與建議
5.1 結論..............................................88
5.2 建議..............................................90

參考文獻..............................................91
附錄A修正型徑向分布函數...............................96
參考文獻
1.Runge, K., Sumpter, B.G., Noid, D.W., Gray, S.K. and Yang, C.Y.,“Electron Propagation Along a Nanowire: A Study in
Chattering.” Nanotechnology, Vol. 9, pp. 365-368, 1998.
2.Pouthier, V. and Girardet, C.,“Electronic Transmission Through a Metallic Cluster Attached to an Adsorbed Nanowire:
Creation of a Nanoscale Electronic on/off Switch.” Surface Science Vol. 511, pp. 203-214, 2002.
3.Buttiker, M., Imry, Y., Landauer, R. and Pinhas, S., ”Generalized Many-Channel Conductance Formula with Application to
Small Rings,” Physical Review B Vol. 31, No. 10, pp. 6207-6215.
4.Niemeyer, C.M., Ceyhan, B., Gao, S., Chi, L., Peschel, S. and Simon, U.,“Site-Selective Immobilization of Gold
Nanoparticles Functionalized with DNA oliomers,” Colloid Polym Sci Vol. 279, pp. 68-72, 2001.
5.Niemeyer, C.M.,“Self-Assembled nanostructures Based on DNA : Towards the Development of Nanobiotechnology,” Current
Opinion in Chemical Biology Vol. 4, pp. 609-618, 2000.
6.Niemeyer, C.M., Boldt, L., Ceyhan, B. and Blohm, D.,“DNA-Directed Immobilization: Efficient, Reversible, and
Site-Selective Surface Binding of Proteins by Means of Covalent DNA-Streptavidin Conjugates,” Analytical Biochemistry
Vol. 268, pp. 54-63, 1999.
7.Park, S.J., Taton, T.A. and Mirkin, C.A.,“Array-Based Electrical Detection of DNA with Nanoparticle Probes,” Science Vol. 295, pp. 1503-1506, 2002.
8.Cao, Y.C., Jin, R. and Mirkin, C.A.,“Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,”
Science Vol. 297, pp. 1536-1540, 2002.
9.Imry, Y. and Landauer, R., “Conductance Viewed as Transmission,” Reviews of Modern Physics, Vol. 71, No. 2, pp.
S306-S312.
10.Bethell, D., Brust, M., Schiffrin, D.J. and Kiely, C., “From Monolayers to Nanostructured Materials: An Organic
Chemist’s View of Self-Assembly,” Journal of Electroanalytical Chemistry, Vol. 409, pp. 137-143, 1996.
11.David, K.F. ,”Quantum Mechanics” Institute of Physics Publishing Bristol and Philadelphia.
12.Rapaport, D.C., ”The Art of Molecular Dynamics Simulation”, Cambridge University Press.
13.Richard, W.,“Quntum Mechanics:classical results, modern systems, and visualized examples”, New York, Oxford University
Press, 1997.
14.Conrad, H. and Sprecher, A.F., ”Characteristics and Mechanisms of Electrorheological Fluids,” J. Statical Phys., Vol.
64, pp. 1073-1091, 1991.
15.Conrad, H., Sprecher, A.F. and Chen, Y. ”Electrostatic particle-particle interactions in electrorheological fluids,”
J. Appl. Phys., Vol. 70, No. 11, pp. 6796-6804.
16.Klingenberg, D.J., Frank, V.S., and Zukoski, C.F., ”Dynamic Simulation of Electrorheological Suspensions,” J. Chem.
Phys., Vol. 91, pp. 7888-7895, 1989.
17.Magoga, M. and Joachim, C., “Conductance and transparence of long molecular wire,” Physical Review B, Vol. 8 pp.
4722-4729, 1997.
18.Nakajima, Y. and Matsuyama, T., ”Electrostatic field and force calculation for a chain of identical dielectric spheres
aligned parallel to uniformly applied electric field,” Journal of Electrostatics, Vol. 55, pp. 203-221, 2002.
19.Brandbyge, M., Kobayashi, N. and Tsukada, M., “Conduction channels at finite bias in single-atom gold contacts,”
Physical Review B, Vol. 60, No. 24, pp. 17064-17070, 1999.
20.Nishiguchi, N., “Dynamics of linked moveable nanoparticles coupled to electron transport,” Physica B 316-317,
pp.441-444, 2002.
21.Nadelli, M.B., “Electronic transport in extended systems: Application to carbon nanotubes,” Vol. 60, No. 11, pp.
7828-7833, 1999.
22.Tadmor, R., “The London-van der waals interaction energy between objects of various geometries,” J. Phys.: Condens.
Matter 13, pp. L195-L202, 2001.
23.Lang, N.D., “Resistance of atomic wires,” Physical Review B, Vol. 52, No. 7, pp. 5335-5343, 1995.
24.Okamoto, M. and Takayanagi, K., “Structure and conductance of a gold atomic chain,” Physical Review B, Vol. 60, No. 11,
pp. 7808-7811, 1999.
25.Vargiamidis, V. and Petsos, G., “Conductance in modulated nanowires,” Materials Science and Engineering B, B69-70, pp.
449-453, 2000.
26.Wang, J., Rincon, O., Polsky, R. and Dominguez, E., “Electrochemical detection of DNA hybridization bases on
DNA-templated assembly of silver cluster,” Electrochemistry Communicatioins, Vol. 5, pp. 83-86, 2003.
27.Nakamura, J., Kobayashi, N., Watanabe, S. and Aono, M., “Structural stability and electronic states of gold nanowires,”
Surface Science, pp. 1266-1271, 2001.
28.Xu, H.Y., Kang, J., Yu, W.X. and Mai, Z.H., ”Tunnel current, conductance and magnetoresistance in double-barrier magnetic
tunnel junctions,” Thin Solid Films, Vol. 375, pp. 210-214, 2000.
29.Hurd, A.J., “The electrostatic interaction between interfacial colloidal particles,” J. Phys. A, Vol. 18 pp.
L1055-L1060, 1985.
30.Kwon, S.Y. and Kim, M.W., “Nano-control of self assembled biomolecular structures,” Current Applied Physics, Vol. 2, pp.
71-78, 2002.
31.Ivanov, G.K., Kozhushner, M.A. and Oleinik, I.I., ”Tunneling dynamics of electrons and effective tunneling potential,” Surface Science, Vol. 363, pp. 360-367, 1996.
32.Lang, N.D., ”Apparent barrier height in scanning tunneling microscopy,” Physical Review, Vol. 37, No. 17, pp.
10395-10399, 1988.
33.Wu, C.W. and Conrad, H., “Electrical properties of electrorheological particle clusters,” Materials Science and
Engineering A, A255, pp. 66-69, 1998.
34.Torres, J.A., Tosatti, E., Corso, A.D., Ercolessi, F., Kohanoff, J. J., Tolla, F.D.D. and Soler, J.M., “The puzzling
stability of monatomic gold wires,” Surface Science Vol. 426, pp. L441-L446, 1999.
35.張有義, “膠體及界面化學入門,” 高立圖書有限公司, 台北市, 1997.
36.陳俊顯, “以奈米微粒篩檢特定鹼基序列之DNA,”自然科學簡訊第13卷第2期,頁55-57.
37.隋安莉, “奈米科技欲DNA感應器,” 科學發展 359期, 頁62-67, 2002年11月.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top