|
1. Shumakoy, N. V., “A method for the experimental study of the process of heating a solid body,” Soviet Physics- Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, 1957.
2. Stolz, G. Tr., “Numerical solution to an inverse problem of heat condition for simple shapes,” ASME J. Heat Transfer, Vol. 82, pp. 20-26, 1960.
3. Beck, J. V., “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, 62-HT-46, 1962.
4. Sparrow, E. M., Haji-Sheikh A. and Lundgern, T. S. ,“The inverse problem in transient heat conduction, “ J. Appl. Mech., Vol. 86e, pp. 369-375, 1964.
5. Beck, J. V., “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
6. Beck, J. V., “Nonlinear estimation applied to the nonlinear inverse heat conduction problem,” Int. J. Heat Mass Transfer, Vol. 13, pp. 713-71, 1970.
7. Alifanov, O. M., “Solution of an inverse problem of heat conduction by iteration method,” J. of Eng. Phys., Vol. 26, No. 4, pp. 471-476, 1974.
8. Beck, J. V., Litkouhi B., and St. Clair C. R., “Efficient sequential solution of nonlinear inverse heat conduction problem,” Numer. Heat Transfer, Vol. 5, pp. 275-286, 1982.
9. Alnajem, N. M., and Özisik, M. N., “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
10. Scott, E. P., and Beck, J. V., “Analysis of order of the sequential regulation solutions of heat conduction problem,” ASME J. Heat Transfer, Vol. 111, pp.218-224, 1989.
11. Beck, J. V., and Murio, D. A., “Combined function specification regularization procedure for solution of inverse heat conduction problem,” AIAA J., Vol. 24, No. 180-185, 1986.
12. Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown wall heat flux in laminar flow through a parallel plate duct,” Numer. Heat Transfer, Part A, Vol. 21, pp. 55-70, 1992.
13. Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown strength of an internal plate heat source,” J. Franklin Institute, Vol. 329, No. 4, pp. 751-764, 1992.
14. Arledge, R. G., and Haji-Sheikh, A., “A iterative approach to the solution of inverse heat conduction problem,” Numer. Heat Transfer, Vol. 1, pp. 365-376, 1978.
15. Woo, K. W., and Chow, L. C., “Inverse heat conduction by direct inverse laplace transform,” Numer. Heat Transfer, Vol. 4, pp. 499-504, 1981.
16. Raynaud, M., and Beck, J. V., “Methodology for comparison of inverse heat conduction methods,” ASME J. Heat Transfer, Vol. 110, pp. 30-37, 1988.
17. Lin, S. P., and Chu H. S., “Thermal uniformity of 12-in silicon wafer during rapid thermal processing by inverse heat transfer method,” IEEE Transaction on Semiconductor Manufacturing, Vol. 13, No. 4, pp. 448-456, November 2000.
18. Frank, I., “An application of least-squares method to the solution of the inverse problem of heat conduction,” J. Heat Transfer, 85C, pp. 378-379, 1963.
19. Mulholland, G. P., Gupta B. P., and San Martin R. L., “Inverse problem of heat conduction in composite meadia,” ASME Paper No. 75-WA/HT-83, 1975.
20. Deverall, L. I., And Channapragada R. S., “ An new integral equation for heat flux in inverse heat conduction,” J. Heat Transfer, 88C, pp. 327-328, 1966.
21. Burggraf, O. R., “An exact solution of the inverse problem in heat conduction theory and applications,” ASME J. Heat Transfer, Vol. 84, pp. 373-382, 1964.
22. Yeung, W. K. and Lam, T. T., “ Second-order finite difference approximation for inverse determination of thermal conductivity,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp. 3685-3693, 1996.
23. Bass, B. R. and Ott, L. J., “ A finite elment formulation of the two-dimensional inverse heat conduction problem,” Adv. Comput. Technol., Vol. 2, pp. 238-248, 1980.
24. Liu, Y. and Murio, D. A., “Numerical experiments in 2-D IHCP on bounded domains part I: the ‘interio’ cube problem,” Computer Math. Appl, Vol. 31, No. 1, pp. 15- 32, 1996.
25. Chen, H. T., and Lin, J. Y., “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, Vol. 34, pp. 1301-1308, 1991.
26. Chen, H. T., and Lin, J. Y., “ Numerical analysis for hyperbolic heat conduction,” Int. J. Mass Transfer, Vol. 36, pp. 2891- 2898, 1993.
27. Chen, H. T., and Lin, J. Y., “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 37, pp. 153-164, 1994.
28. 吳朝煌, ”逆向熱傳導問題之研究 - 熱傳導係數及 未知邊界溫度之預測,” 國立成功大學機械工程研究 所, 碩士論文, 1994.
29. H. T. Chen, S. M. Chang, “Application of the hybrid method to inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 33, pp. 621-628, 1990.
30. H. T. Chen, S. Y. Lin, L. C. Fang, “Estimation of surface temperature in two- dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
31. H. T. Chen, S. Y. Lin, L. C. Fang, “Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 45, pp. 15-23, 2002.
32. H. T. Chen, X. Y. Wu, “Application of the hybrid method to the estimation of surface conductions from experimental data,” in: Trends in Heat, Mass and Momentum Transfer, India, 2003, submitted for publication.
33. H. T. Chen, X. Y. Wu, Y. S. Hsiao, “Estimation of surface condition from the theory of dynamic thermal stresses,” int. J. Thermal Sciences, Vol. 43, pp. 95-104, 2004.
34. 張文奎,”散熱鰭片擴散熱阻之分析,” 國立清華大 學工程與系統科學研究所, 碩士論文, 2002.
35. 劉建佳,”Pentium 4散熱模組底板具凸起物之散熱性 能研究,” 國立台灣科技大學機械工程研究所, 碩士 論文, 2002.
36. S. Lee, ”Optimum Design and Selection of Heat Sinks,” Proceedings of 11th IEEE Semi- Term Symposium, pp. 48-54, 1995.
37. Honig, G., and Hirdes, U., “A method for the numerical inversion of Laplace transforms,” J. Comp. Appl. Math., Vol. 9, pp. 113-132, 1984.
|