跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/03/05 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭益銘
研究生(外文):Yi-Ming Kuo
論文名稱:焚化灰渣玻璃化之評估研究
論文名稱(外文):Evaluation of Vitrification on Incineration Ashes
指導教授:林達昌蔡朋枝蔡朋枝引用關係
指導教授(外文):Ta-Chang LinPerng-Jy Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:214
中文關鍵詞:熔渣多環芳香烴重金屬灰渣玻璃化熱熔融
外文關鍵詞:VitrificationAshesSlagPolycyclic Aromatic HydrocarbonsMetalsMelting
相關次數:
  • 被引用被引用:23
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
  隨經濟發展與生活水準提升,台灣地區之廢棄物類多量鉅,焚化係被認為是垃圾處理之主要技術,然而焚化灰渣含有PCDD/Fs及重金屬等有毒物質,而垃圾掩埋場用地取得不易,故衍生許多問題。本研究係以高溫熔融法處理飛灰作探討,分別於實廠之焦炭床式熱熔融爐與實驗室之電氣式熱熔融爐進行,希望縮減熔渣體積,將灰渣中有毒物質作固化╱安定化處理,並冀望能將灰渣資源化。
  在實廠實驗部分,灰渣、焦炭與石灰混合並在焦炭床式熱熔融爐進行玻璃化,在進料物質中,灰渣所貢獻PAHs佔總量之97.2%,而熱熔融過程中,高蒸氣壓PAHs係藉由直接揮發進入煙道氣;至於低蒸氣壓者則傾向於被吸附並包匣在熔渣並排出系統外。總PAHs之O/I值(output- mass / input-mass ratio)為0.011,其中個別O/I比又以Nap與Acpy最高,推測係原存在於灰渣與焦炭中,或來自於高分子量有機物質解離碎片,經由煙道氣排放而造成。
  灰渣主要成分為Ca、Si、Fe、Al等地殼元素與Zn、Pb與Cu等人為污染元素,熱熔融過程中,除Ca外元素均有>90%之比例來自灰渣,石灰提供系統中24.7%之Ca以幫助玻璃化進行。
  熔渣中除Ca、Si、Al與Mg等地殼元素,人造污染元素含量遠較灰渣低,顯示熱熔融前後人造污染元素之分佈移動變化極大;礦塊以Fe為最主要成分,但在熔煉回收重金屬時必須注意到高含量且具毒性之Cr。二次飛灰成分與入料灰渣頗為類似,較大歧異係蘊藏有大量Zn與Pb,可考慮在回收再利用。
  在熱熔融過程中,低沸點元素會傾向於揮發至煙道氣中,被懸浮微粒吸收並被空氣污染防治設備攔截,成為二次飛灰或直接排放至大氣中;高沸點且比重大的元素會藉由重力分離到礦塊中;剩下比重較小元素會殘留在熔渣中。經過熱熔融後,熔渣中大部分金屬移動性均有降低現象,顯示熱熔融確有其成效。
  另外,在實驗室中針對不同飛灰/SiO2比例進行熱熔融,發現熔渣中Cd、Cr、Cu、Ni、Pb、Zn及Fe之移動力降低與SiO2含量並無顯著關係,Al、Ca與Mg之移動力隨SiO2含量改變則呈現不規則變化,直到SiO2含量比例達到0.3後,移動力有明顯下降之趨勢。Al、Ca與Mg之溶出雖不具毒性,卻可能導致熔渣結構之退化使有害金屬溶出,故未來應進一步研究Al、Ca與Mg等移動力作為熔渣穩定性長期指標之可行性。
  從微結構來觀察,純灰渣經熱熔融後,僅係將殘留有機物分解,連接無機物顆粒,表面仍有孔隙並呈鬆散結構;隨SiO2添加量增加,熔渣外表漸出現尖銳邊緣,孔隙漸減並呈現玻璃化之密實結構,結晶相減少且為氧共用度較高之矽酸鹽結構。
  添加SiO2將增加熔渣中金屬之化學穩定性;添加Al或Mg等金屬氧化物,有助於形成結晶相並增加熔渣之抗壓強度,但卻會增加其他金屬之溶出,如何在抑制有害金屬溶出與增加熔渣強度做取捨,實為玻璃化熔融法未來研究的一個重要方向。
  In Taiwan, the quantity and variety of waste has recently increased with the rapid economic growth. Incineration has been considered as a predominate technology of the waste treatment. However, ashes, generating during the incineration, contain dioxins, heavy metals and/or organic toxics. There are also many problems concerning the disposal of ashes due to the dwindling number of final disposal sites. This study intended to vitrify the municipal solid waste incineration ashes. The experimental sections included two parts: real-scale part in a coke bed furnace, and lab-scale part in an electrical heating furnace. The goal of this investigation is to reduce the ashes volume, to stabilize the toxics in ashes and to recycle the slag.
  For real-scale experimental part, ashes, coke and lime were mixed and then vitrified in a coke bed furnace. Among the input material, ashes dominated 97.2% of PAH mass. During vitrificaiton, PAHs with high vapor pressure would be directly emitted in the flue gas. On the contrary, those with low vapor pressure tended to be adsorbed and encapsulated in slag. The total PAH O/I (output-mass / input-mass) ratio was 0.011. The O/I ratios of NaP and Acpy were relatively higher than that of the other individual PAHs. High levels of NaP and Acpy in the flue gas essentially either came from their original constitutes in ash and coke, or from the fragments of partially decomposed HM-PAHs during melting process.
  The main composition of ashes was crust metals (Ca, Si, Fe, Cu and Al) and anthropogenic metals (Zn and Pb). During vitrification, ashes contributed >90% of metal species mass, except for Ca. The lime provided 24.7% of Ca to facilitate the vitrification and the encapsulation of slag.
  Except for crust metals, the composition of anthropogenic metals in slags was much lower in comparison to ashes, indicating the drastic variation of anthropogenic metal distributions during vitrification. The major component of ingot was Fe. However, the high composition of toxic Cr deserves more attention while metals are recovered in the smelting process. The composition of secondary fly ash and input ashes was similar except for the high level of Pb and Zn. From an economic point of view the recovery of these metals should be seriously considered.
  During vitrification, metals with low boiling tended to vaporize into the flue gas, and were then absorbed in particulate. They would be trapped by the air pollution control devices as the secondary fly ash, or discharged directly into ambient air. Metals with higher boiling point and larger specific weight would be separated into ingot due to the gravity and those remains were encapsulated in slag. Except for few metals, the mobility of metals in slag was significantly reduced by vitrificaiton.
  For lab-scale vitrification, specimens with different fly ash/ SiO2 ratios were tested. It was found that there was no significant correlation between SiO2 composition and the immobilization of Cd, Cr, Cu, Ni, Pb, Zn and Fe. There was no clear correlation between the mobility of Al, Ca and Mg and SiO2 content unless adequate amount of the latter was added. The leaching of Al, Ca and Mg won’t cause any problem since they are not harmful.
  For pure fly ash, vitrification would only decompose the organics and build interconnection among inorganic particles. On the basis of the microstructure observation, pores were still found to exist on the slag surface. With the increasing amount of SiO2 addition, the slag gradually grow sharper in shape and also more compact. In addition, the crystalline phase diminished and higher oxygen-shared frame was formed.
  It is also found that the SiO2 addition during vitrification contributes to the chemical stability of metals in slag. On the other hand, the addition of metal oxides, such as Al2O3 or MgO, would enhance the formation of the crystalline phase and elevate the compressive strength of slag. At the same time, however, greater amount of other metals are leached out. Clearly, between suppressing the leaching of toxic metals and reinforcing the slag, a balance must be found in the future follow-up research.
博碩士論文授權書 I
考試合格證明 II
中文摘要 III
英文摘要 VI
致謝 IX
目錄 X
表目錄 XIV
圖目錄 XVI
第一章 前言 1
第二章 文獻回顧 6
2-1 灰渣來源與形成特性介紹 6
2-1-1 灰渣形成與相關性質 6
2-1-2 灰渣中重金屬含量與特性 10
2-1-3 灰渣中多環芳香烴含量與特性 13
2-1-4 灰渣中戴奧辛及呋喃含量與特性 26
2-2 熱熔融法 32
2-2-1 原理簡介 32
2-2-2 玻璃化介紹 33
2-2-3 熔融法過程特性 38
2-2-4 熔融後熔渣特性 42
2-3 熔融過程機制 46
2-3-1 玻璃化機制 46
2-3-2 相變態動力學 48
2-3-3 旋節分解 50
2-3-4 成核 53
2-3-5 晶體成長 56
2-3-6 再結晶現象 58
2-3-7 玻璃化技術應用 61
2-4 實驗與實例 63
2-4-1 玻璃化實驗 63
2-4-2 國內熱熔融實驗 64
2-4-3 國外熔融實驗 68
2-4-4 熔融法實廠介紹 70
2-5 其他處理灰渣技術 79
2-5-1 燒結 79
2-5-2 水泥固化╱穩定化處理 79
2-5-3 化學處理 80
2-5-4 酸萃硫化穩定法 81
2-5-5 回收 81
2-5-6 其他技術 83
2-6 熔融物質再利用 84
2-6-1 玻璃陶瓷介紹 84
2-6-2 熔渣材料應用 86
2-6-3 其他商業應用 87
第三章 實驗方法與設備 89
3-1 研究流程 89
3-1-1 實廠研究範疇 89
3-1-2 實驗室研究範疇 90
3-1-3 模式驗證 90
3-2 研究方法與步驟 92
3-2-1 灰渣、熔渣與飛灰採樣 92
3-2-2 PAHs分析 93
3-2-3 重金屬總量分析 96
3-2-4 毒性特性溶出試驗 99
3-2-5 六步驟萃取 102
3-2-6 微結構觀察與元素半定量分析 104
3-2-7 結晶相分析 104
3-2-8 熱熔融操作條件說明 105
3-3 實驗設備 105
3-3-1 電氣式熱熔融爐介紹 105
3-3-2 熔融、萃取與消化設備 105
第四章 實驗分析與模式驗證 107
4-1 PAHs分析 107
4-1-1 分析條件 107
4-1-2 檢量線建立 108
4-2 重金屬分析 109
4-2-1 分析條件 109
4-2-2 檢量線建立 110
4-3 模式建立 111
4-3-1 迴歸分析 111
4-3-2 敏感度分析 113
第五章 結果與討論 114
5-1 焦炭床式熱熔融爐中PAHs之宿命 114
5-1-1 入料物質PAHs含量 114
5-1-2 焦炭床式熱熔融爐排放物質PAHs含量 118
5-1-3 熔融過程PAHs之O/I比值與削減率 119
5-1-4 毒性 120
5-2 焦炭床式熱熔融爐重金屬之宿命 124
5-2-1 入料物質重金屬含量 124
5-2-2 焦炭床式熱熔融爐排放物質中重金屬含量 128
5-2-3 重金屬在熱熔融過程中之特性 131
5-3 焦炭熱熔融法對重金屬移動力之影響 133
5-3-1 毒性溶出實驗 133
5-3-2 人為污染金屬移動相分佈 133
5-3-3 地殼元素金屬移動相分佈 144
5-3-4 結晶相分析 149
5-3-5 焦炭添加之影響 150
5-3-6 SEM圖 152
5-4 添加SiO2對熱熔融重金屬移動率之影響 153
5-4-1 人為污染金屬在熱熔融過程之質量殘留率分析 154
5-4-2 人為污染金屬移動相分佈 155
5-4-3 地殼元素移動相分佈 159
5-5 添加SiO2對熔渣結構之影響 162
5-5-1 熔渣SEM圖 162
5-5-2 熔渣中O含量探討 165
5-5-3 熔渣結晶相分析 166
5-6 模式 171
5-6-1 金屬物種分布特性模式 171
5-6-2 金屬物種分布特性敏感度分析 173
5-6-3 金屬物種移動相分布模式 177
5-6-4 金屬物種移動相分布模式敏感度分析 180
5-6-5 模式之限制 188
第六章 結論與建議 190
6-1 結論 190
6-2 建議 191
參考文獻 193
附錄 208
附錄-1 PAHs之檢量線 208
附錄-2 重金屬之檢量線 210
自述 214
Abe, S.; Funmiaki, K.; Masaharu, O. “Ash Melting Treatment by Rotating Type Surface Melting Furnace.” Waste Management, Vol. 16, pp. 431-443, 1996.
Abe, S.; Kanbayashi, F.; Kimura, T. “Decomposition of Dioxins and Related Compounds in MSW Ash Melting Process.” Organohalogen compounds, Vol. 31, pp. 348-353, 1997.
Adams, B.; Buekens, A.; Walter, E.; Joannes, J. “Dioxin-Emission from a MSWI Related to Memory-Effect in a Two-Stage Wet Scrubber.” Organohalgen Compounds, Vol. 46, pp. 178-181, 2000.
Allaire, C. “Use of Red Mud for the Production of Aluminum Reduction Cell Potlining Refractories.” American Ceramic Society Bulletin, Vol. 72, pp. 59-64, 1993.
Alonso, M. C.; Luxán, M. P. Aplicaciones de las Cenizas Volantes en el Campo de la Construcción Experiencia, Española. Ed. ASINEL, PIE, IETcc, Madrid, 1995.
Amritphale, S. S.; Patel, M. “Utilization of Red Mud and Fly Ash for Manufacturing Bricks with Pyrophyllite.” Silicates Industries, Vol. 3-4, pp. 31-34, 1987.
Avrami, M. J. Chemical Physics, Vol. 7, pp. 1103, 1939.
Bagchi M.; Bagchi D. J.; Balmoori, W. Ye; Stohs, S. J. “Naphthalene - Induced Oxidative Stress And DNA Damage In Cultured Macrophage J774A.1 Cells” Free Radical Biology and Medicine, Vol. 25, pp. 137-143, 1998.
Barbieri, L.; Lancelloti, I.; Manfredini, T.; Queralt, I.; Rincón, J. M.; Romero, M. “Glasses and Glass-Ceramics from Coal Fly Ashes.” Fuel, Vol. 78, pp. 271-276, 1999.
Barbieri, L.; Corradi, A.; Lancellotti, I. “Bulk and Sintered Glass - Ceramics by Recycling Municipal Incinerator Bottom Ash.” Journal of the European Ceramic Society, Vol. 20, pp. 1637-1643, 2000.
Barton, R. G.; Maly, P. M.; Clark, W. D.; Seeker, W. R. “Fate of Metal in Waste Combustion Systems.” Combustion Science and Technology, Vol. 74, pp. 327-342, 1990.
Baxter, L. L.; Mitchell, R. E. “The Release of Iron during the Combustion of Illinois No. 6 Coal.” Combustion and Flame, Vol. 88, pp. 1-14, 1992.
Baxter, L. L. “Char Fragmentation and Fly Ash Formation during Pulverized Coal Combustion.” Combustion and Flame, Vol. 90, pp. 174-184, 1992.
Baxter, L. L.; Mitchell, R. E. and Fletcher, T. H. “Release of Inorganic Material during Coal Devolization.” Combustion and Flame, Vol. 107, pp. 494-502, 1997.
Bhatty, J. I.; West, P. B. “Interaction of Heavy Metals in Portland Cement Stabilized Systems: Effect on Paste Hydration.” in Proceedings of the Emerging Technologies Wymposium on Cement and Concrete in the Global Environment (PCA SP114T), Chicago, 1993.
Bittner, J. D.; Howard, J. B. In Particulate Carbon: Formation during Combustion, Plenum, New York, 1981.
Bjfreseth, A. C.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydrocarbons, Vol. 1, Mercel Dekker Inc., New York and Basel, 1983.
Boccaccini, A.R.; Bücker, M.; Bossert, J.; Marszalek, K. “Glass Matrix Composites from Coal Fly Ash and Waste Glass.” Waste Management, Vol. 17, pp. 39-45, 1997.
Brunner, P. H.; Monch, H. “The Flux of Metals through Municipal Solid Waste Incinerators.” Waste Management and Research, Vol. 4, pp. 105-119, 1986.
Carlson, K. “Heavy Metal from ‘Energy from Waste’ Plants Comparison of Gas Cleaning Systems.” Waste Management and Research, Vol. 4, pp. 15-20, 1986.
Céline, X.; Catherine, P.; Edwin, D. P. “De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans on Fly Ash from a Sintering Process.” Environmental Science and Technology, Vol. 35, pp. 1616-1623, 2001.
Calaminus, B.; Stahlberg, R. “Continuous in-Line Gasification / Vitrification Process for Thermal Waste Treatment: Process Technology and Current Status of Projects.” Waste Management, Vol. 18, pp. 547-556, 1998.
Chen, X., Badie, J. M.; Flamant, G. “Dynamics of Complex Chemical System Vaporization at High Temperature. Application to the Vitrification of Fly Ashes by Thermal Plasma.” Chemical Engineering Science, Vol. 52, pp. 4381-4391, 1997.
Chiang, P. C. “Identification of Toxic PAHs Compounds in Urban Solid Wastes.” Journal of Hazardous Materials, Vol. 31, pp. 29-37, 1992.
Cheng, T. W.; Chu, J. P.; Tzeng, C. C.; Chen, Y. S. “Treatment and Recycling of Incinerated Ash Using Thermal Plasma Technology.” Waste Management, Vol. 22, pp. 485-490, 2002.
Chimenos, J. M.; Segarra, M.; Fernandez, M. A.; Espiell, F. “Characterization of the Bottom Ash in Municipal Solid Waste Incinerator.” Journal of Hazardous Material, Vol. A64, pp. 211-222, 1999.
Christopher, J. P.; William, A. P.; Jack, B. H. “Thermodynamic Driving Forces for PAH Isomerization and Growth during Thermal Treatment of Polluted Soils.” Journal of Hazardous Materials, Vol. B79, pp. 189-208, 2000.
Chu, J. P.; Hwang, I. J.; Tzeng, C. C.; Kuo Y. Y.; Yu, Y. J. “Characterization of Vitrified Slag from Mixed Medical Waste Surrogates Treated by a Thermal Plasma System.” Journal of Hazardous Materials, Vol. 58, pp. 179-194, 1998.
Ciajolo, A.; D’anna, A.; Barbella, R.; Bertoli, C. “Combustion of Tetradecane and Tetradecane/a-Methylnaphthalene in A Diesel Engine with Regard to Soot and PAH Formation.” Combustion Science and Technology, Vol. 87, pp. 127-137, 1992.
Constantino, F. P.; Miguel, R. P.; José, V. “Solidification / Stabilization of Electric Arc Furnace Dust using Coal Fly Ash Analysis of the Stabilization Process.” Journal of Hazardous Materials, Vol. B82, pp. 183-195, 2001.
Conner, J. R. Chemical Fixation and Solidification of Hazardous Waste, Van Nostrand Reinhold, New York, 1990.
Conner, J. R.; Hoeffiner, S. L. “Critical View of Stabilization / Solidification Technology.” Environmental Science and Technology, Vol. 28, pp. 397-462, 1998.
Davidson, R. L.; Natusch, D. F. S.; Wallace, J. R. “Trace Elements in Fly Ash: Dependence of Concentration on Particle Size.” Environmental Science and Technology, Vol. 8, pp. 1107-1113, 1974.
Dawson, J. P.; Thayar, W. W.; Desforges, J. F. “Acute Hemolytic Anaermia in the New-Born Infant Due to Naphthalene Poisoning: Report of Two Cases, With Investigations into the Mechanism of the Disease.” Blood, Vol. 13, pp. 1113-1125, 1958.
Dias, J. R. Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam, 1987.
Dominguez, E. A.; Uhlmann, R. “Ecological Bricks Made with Clays and Steel Dust Pollutants.” Applied Clay Science, Vol. 11, pp. 237-249, 1996.
Ecke, E.; Sakanakura, H.; Matsuto, T.; Tanaka, N.; Lagerkvist, A. “State–of–the-Art-Treatment Processes for Municipal Solid Waste Incineration Residues in Japan.” Waste Manage Research, Vol. 18, pp. 41-51, 2000.
Ecke, H.; Sakanakuras, H.; Matsuto, T.; Tanaka, N; Lagerkvist, A. “Effect of Electric Arc Vitrification of Bottom Ash on the Mobility and Fate on Metals.” Environmental Science and Technology, Vol. 35, pp. 1531-1536, 2001.
Eiceman, G. A.; Vandiver, V. J. “Adsorption of Polycyclic Aromatic Hydrocarbons of Fly Ash from a Municipal Incinerator and a Coal-Fired Power Plant.” Atmospheric Environment, Vol. 17, pp. 461-465, 1983.
Eighmy, T. T.; Crannell, B. S.; Butler, L. G. “Heavy Metal Stabilization in Municipal Solid Waste Combustion Dry Scrubber Residue Using Soluble Phosphate.” Environmental Science and Technology, Vol. 31, pp. 3330- 3338, 1997.
Ellison, A. J. G.; Mazer, J. J.; Ebert, W. L. “Effect of Glass Composition on Waste from Durability: A Critical Review.” ANL-94/28, Argonne National Laboratory, 1994.
EPA, Exposure Factors Handbook, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC., EPA/600/889/043, 1989.
Erol M.; Genç, A.; Öveçoglu, M. L.; Yücelen, E.; Küçübayrak, S.; Taptik, Y. “Characterization of a Glass-Ceramic Produced from Thermal Power Plant Fly Ashes.” Journal of the European Ceramics Society, Vol. 20, pp. 2209-2214, 2000.
Esposito, F.; Colonna, G.; Longo, S.; Capitelli, M. “Monte Carlo Global Sensitivity Analysis of Boltzmann Equation for Electron Kinetics in H2 Discharges.” Plasma Chemistry and Plasma Processing, Vol. 16, pp. 1-16, 1996.
Feitelberg, A. S.; Longwell, J. P.; Sarofim, A. F. “Metal Enhanced Soot and PAHs Formation.” Combustion Flame, Vol. 92, pp. 241-253, 1993.
Friedlander, S. K. Smoke, Dust and Haze, John Wiley and Sons, New York, 1977.
Frenkel, J. Journal of Physics, Vol. 9, pp. 385, 1945.
Frenklach, M. “Production of Polycyclic Aromatic Hydrocarbons in Chlorine Containing Environments.” Combustion Science and Technology, Vol. 74, pp. 281-296, 1990.
Fujimoto, T.; Tanaka, E. “Melting Treatment for Incinerated Residue of Municipal Waste.” Proceeding from the Pacific Basin conference on Hazardous Waste. Singapore: Pacific Basin Consortium for Hazardous Waste Research, 1989.
Gao, Z.; Drummond, C. H. “Thermal Analysis of Nucleation and Growth of Crystalline Phases in Vitrified Industrial Waste.” Journal of American Ceramic Society, Vol. 82, pp. 561-565, 1999.
Goldenberg, M.; Frenklach, M. “A Post-Processing Method for Feature Sensitivity Coefficients.” International Journal of Chemical Kinetics, Vol. 27, pp. 1135-1142, 1995.
Gounon, J.; Milhau, A. “Analysis of Inorganic Pollutants Emitted by the City of Paris Garbage Incineration Plants.” Waste Management and Research, Vol. 4, pp. 95-109, 1986.
Grimmer, G. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, CRC Press Inc, 1983.
Hadvig, S. Steel Chimneys-Gas and Surface Temperatures, Polytlknisk. Forlag, Copenhagen, pp. 25, 1971.
Harold, C.; Thompson, J.; Donald, C.; Kendall, A.; Kortmacher, L.; Kenneth, L. R; Larry, G. R.; Chen, J. J. “Assessment of the Contamination of a Multi-building Facility by Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, and Polychlorinated Dibenzofurans.” Environmental Science and Technology, Vol. 20, pp. 597-603, 1986.
Harris, S. J.; Weiner, A. M.; Blint, R. J. “Formation of Small Aromatic Molecules in a Sooting Ethylene Flame.” Combustion and Flame, Vol. 72, pp. 91-109, 1988.
Helble, J. J.; Neville, M.; Sarofim, A. F. 21st Symposium on Combustion, The Combustion Institute: Pittsburgh, PA, pp. 411-417, 1986.
Helble, J. J.; Sarofim, A. F. “Influence of Char Fragmentation and Ash Particle Size Distribution.” Combustion and Flame, Vol. 76, pp. 183-186, 1989.
Helble, J. J.; Srinivasachar, S.; Boni, A. A. Prog. Energy Combustion Science, Vol. 16, pp. 267-279, 1990.
Helble, J. J.; Hlustick, D. “Dioxin Emissions and Congener Distribution Resulting from Hazardous Waste Incineration.” Presented at Proc. 87th AWMA Annual Meeting &Exhibition, Ohio, June 19-24, 1994.
Hisashi, E.; Yoshikazu, N.; Kenji, S. “Production of Glass Ceramics from Sewage Sludge.” Water Science and Technology, Vol. 36, pp. 235-541, 1997.
Hjelmar, O. “Disposal Strategies for Municipal Solid Waste Incineration Residues.” Journals of Hazardous Materials, Vol. 47, pp. 345-368 1996.
Huang, H.; Buekens, A. “On the Mechanism of Dioxin Formation in Combustion Process.” Chemosphere, Vol. 31, pp. 4099-4117, 1995.
Hunsinger, H.; Kreisz, S.; Seifert, H. “PCDD/F Behavior in Wet Scrubbing System of Waste Incineration Plants.” Chemosphere, Vol. 37, pp. 2293-2297, 1998.
IARC, Polynuclear aromatic compounds Part 1 Chemical, environmental and experimental data, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency, 1983.
Ishida, M.; Shiji, R.; Nie, P.; Nakamura, N. “Full-Scale Plant Study on Low Temperature Thermal Dechlorination of PCDD/PCDFs in Fly Ash.” Organohalogen Compounds, Vol. 27, pp. 147-152, 1996.
Ishikawa, S. “Treatment technique of APC residue by using high performance refractory chelate.” Atarashii tainetsu kireeto niyoru kooseinoo hibai, Kankyo-Shisetsu, Vol. 58, pp. 2-14, 1994.
Ito, T. “Vitrification of Fly Ash by Swirling-Flow Furnace.” Waste Management, Vol. 16, pp. 453-460, 1996.
Izumikawa, C. “Metal Recovery from Fly Ash Generated from Vitrification Process for MSW Ash.” Waste Management, Vol. 16, pp. 501-507, 1996.
Jackson, K. A. Progress in Solid State Chemistry, Vol. 3, Pergamon Press, New York, 1967.
Jantzen, C. M.; Huston, N. D.; Gilliam, T. M.; Bleier, A.; Spence, R. D. “Vitrification Treatability Studies of Actual Waste Water Treatment Sludges.” U.S. DOE Report WSRC-MS-95-0064, Savannah River Technology Center, Westinghouse Savannah River Co., Aiken, S.C. and Proceedings of Waste Management 95, 1995.
Jimbo, H. “Plasma Melting and Useful Application of Molten Slag.” Waste Management, Vol. 16, pp. 417-422, 1996.
Jones G. O. Glass, rev Parke S., Chapman & Hall, London, 1971
Katsuura, H.; Inoue, T.; Hiraoka, M.; Saika, S. “Full-Scale Plant Study on Fly Ash Treatment by the Acid Extraction Process.” Waste Management, Vol. 16, pp. 491-499, 1996.
Kauppinen, E. I.; Lind, T. M.; Valmari, T.; Yalatalo, S.; Jokiniemi, J. K. Applications of Advanced Technology to Ash-Related Problems in Boilers, Plenum Press, New York, pp. 471-484, 1995.
Kawakami, I.; Esaki, M.; Tetsuyama, I.; Sumitomo, M. “Immobilization of Fly Ash from MSW Incinerators and Ash-Melting Furnace.” Waste Management, Vol. 16, pp. 483-489, 1996.
Kersten, M.; Förstner, U. In Chemical Speciation in the Environment, Ure, A. M.; Davidson, C. M. Edition; Chapman and Hall: Glasgow, Scotland, pp. 234-275, 1995.
Kersten, M.; Moor, C.; Johnson, A. “Emission Potential of Heavy Metals from Landfilled MSW Incineration Bottom Ash.” Müll and Abfall, Vol. 11, pp. 748-758, 1995.
Kingery, K. D.; Bowen, H. K. Uhlmann, D. R. Introduction to Ceramics, Wiley, New York, 1976.
Kinto, K. “Ash Melting System and Refuse of Products by Arc Processing.” Waste Management, Vol. 16, pp. 423-430, 1996.
Kirk, D. W.; Chan, C. C. Y.; Marsh, H. “Chromium Behavior during Thermal Treatment of MSW Fly Ash.” Journal of Hazardous Material, Vol. 90, pp. 39-49, 2002.
Kjell, E. H.; Bengt, G. “Environmental Properties of Vitrified Fly Ash from Hazardous and Municipal Waste Incineration.” Waste Management, Vol. 20, pp. 167-176, 2000.
Koichiro, K., “Ash Melting System and Reuse of Produce by Arc Processing.” Waste Management, Vol. 16, pp. 423-430, 1996.
Kulish, G. P.; Vilder, V. L. “Application of Pseudomonas Pulid PpG786 Containing P-450 Cytochrome Monooxugenase for Removal of Trace Naphthalene Concentration.” Biotechnology, progress 7, pp. 93-98, 1991.
Law, S. L.; Gordon, G. E. “Sources of Metal Size in Municipal Incinerator Emissions.” Environmental Science and Technology, Vol. 13, pp. 432-438, 1979.
Law, V. J.; Sharma, Y. “Computation of the Gradient and Sensitivity Coefficients in Sum of Squares Minimization Problems with Differential Equation Models.” Computers Chemical Engineering, Vol. 21, pp. 1471-1479, 1997.
Lee, W. J.; Liow, M. C.; Tsai, P. J.; Hsieh, L. T. “Emission of Polycyclic Aromatic Hydrocarbons from Medical Waste Incinerators.” Atmospheric Environment, Vol. 36, pp. 781-790, 2002.
Li, C. T.; Lee, W. J.; Mi, H. H.; Su, C. C. “PAH Emission from the Incineration of Waste Oily Sludge and PE Plastic Mixtures.” the Science of the Total Environment, Vol. 170, pp. 171-183, 1995.
Li, C. T.; Huang Y. J.; Huang K. L.; Lee, W. J. “Characterization of Slags and Ingots from the Vitrification of Municipal Solid Waste Incineration Ashes.” Industrial Chemical Engineering Research, Vol. 42, pp. 2306-2313, 2003.
Linak, W. P.; Peterson, T. W. “Effect of Coal Type and Residence Time on the Submicron Aerosol Distribution from Pulverized Coal Combustion.” Aerosol Science and Technology, Vol. 3, pp. 77-96, 1984.
Liu, K.; Xie, W.; Zhao, Z. B.; Pan, W. P.; Riley, J. T. “Investigation of Polycyclic Aromatic Hydrocarbons in Fly ash From Fluidized Bed Combustion Systems.” Environmental Science and Technology, Vol. 34, pp. 2273-2279, 2000.
Luckscheiter, B.; Nesovic, M. “Development of Glasses for the Vitrification of High Level Liquid Waste (HLLW) in a Joule Heated Ceramic Melter.” Waste Management, Vol. 16 pp. 571-578, 1996.
Luisa, B.; Anna, C.; Isabella, L. “Bulk and Sintered Glass Ceramics by Recycling Municipal Incinerator Bottom Ash.” Journal of European Ceramic Society, Vol. 20, pp. 1637-1643, 2000a.
Luisa, B.; Anna, C.; Isabella, L. “Alkaline and Alkaline-Earth Silicate Glass and Glass-Ceramics from Municipal and Industrial Wastes.” Journal of European Ceramic Society, Vol. 20, pp. 2477-2483, 2000b.
Lutz, A. E.; Kee, R. T.; Miller, J. A. SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, SANDIA REPORT, SANDIA87-8248, pp. 1-32, 1992.
Mackenzie, J. K.; Shuttleworth, R. Physical Society, Vol. B62, pp. 833, 1949.
Menzie, C. A.; Potocki, B. B.; Santodonato, J. “Exposure to Carcinogenic PAHs in the Environment.” Environmental Science and Technology, Vol. 26, pp. 1278-1284, 1992.
Mi, H. H.; Lee, W. J.; Chen, C. B.; Yang, H. H.; Wu, S. J. “Effect of Fuel Aromatic Content on PAH Emission from a Heavy-Duty Diesel Engine.” Chemosphere, Vol. 41, pp. 1783-1790, 2000.
Mitchell, R. E.; Akanetuk, A. E. J. 26th Symposium (international) on Combustion, The Combustion Institute: Pittsburgh, PA, pp. 3137-3144, 1996.
Natusch, D. F. S.; Taylor, D. R. “Environmental Effects of Western Coal Combustion.” Part IV. Environmental Protection Agency, No. 600/3-80- 094, 1980.
Nagib, S.; Inoue, K. “Recovery of Lead and Zinc from Fly Ash Generated from Municipal Incineration Plants by Means of Acid and / or Alkaline Leaching.” Hydrometallurgy, Vol. 56, pp. 269-292, 2000.
Neville, M.; Sarofim, A. F. “The Stratified Composition of Inorganic Submicron Produced during Coal Combustion.” 19th Symposium (International) on Combustion, The Combustion Institute, pp. 1441-1444. 1982.
Nisbet, C.; LaGcy, P. “Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons, (PAHs).” Reg Toxicol Pharmacol, Vol. 16, pp. 290-300, 1992
Nishigaki, M. “Reflecting Surface-Melt Furnace and Utilization of the Slag.” Waste Management, Vol. 16, pp. 445-452, 1996.
Oden, L.L.; Connor, W.K. Vitrification of residue (ash) from municipal waste combustion systems, ASME/ U.S. Bureau of Mines Investigation Program Report on CRTD-Vol. 24, 1994.
Ortego, D. J.; Jackson, S.; Yu, G. S.; McWhinney, H.; Cocke, D. L. “Soildification of Hazardous Substances: A TGA and FTIR Study of Portland Cement Containing Metal Nitrates.” Journal of Environmental Science and Health, Vol. A24, pp. 589-602, 1989.
Pannhorst, W. “Glass - Ceramics, State – of - the Art.” Journal of Non-Crystalline Solids, Vol. 219, pp. 198-204, 1997.
Park, Y. J.; Heo, J. “Vitrification of Fly Ash from Municipal Solid Waste Incinerator.” Journal of Hazardous Material, Vol. B91, pp. 83-93, 2002.
Partridge, G. “An Overview of Glass-Ceramics. Part 1. Development and Principal Bulk Applications.” Glass Technology, Vol. 35, pp. 116-127, 1994.
Pereira, C. F.; Rodríguez-Piñero, M.; Vale, J. “Solidification/ Stabilization of Electric Arc Furnace Dust Using Coal Fly Ash. Analysis of the Stabilization Process.” Journal of Hazardous Material, Vol. 82, pp. 183-195, 2001.
Petry, T.; Schmid, P.; Schlatter, C. “Airborne Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) and Urinary Excretion of 1-Hydroxypyrene of Carbon Anode Plant Workers.” Annual Occupational Hygiene, Vol. 40, pp. 345-357, 1996.
Quann, R. J.; Neville, M.; Janghorbani, M.; Mims, C. A.; Sarofim, A. F. “Mineral Matter and Trace-Element Vaporization in a Laboratory Pulverized Coal Combustion System.” Environmental Science and Technology, Vol. 16, pp. 776-781, 1982.
Raask, E. J. Inst. Energy, Vol. 57, pp. 231-239, 1984.
Raask, E. Mineral Impurities in Coal Combustion, Hemisphere, New York, 1985.
Reimann, D. O. “Heavy Metals in Domestic Refuse and their Distribution in Incinerator Residues.” Waste Management and Research, Vol. 7, pp. 57-65, 1989.
Rincón, J. M.; Romero, M. “Glass-Ceramics as Building Materials.” Materiales de Construcción, Vol. 46, pp. 91-106, 1996.
Romero, M.; Rincón, J. M. “Preparation and Properties of High Iron Oxide Content Glasses Obtained from Industrial Wastes.” Journal of the European Ceramic Society, Vol. 18, pp. 153-160, 1997.
Romero, M.; Rincón, J. M. “Surface and Bulk Crystallization of Glass-Ceramic in the Na2O-CaO-ZnO-Fe2O3-Al2O3-SiO2 System Derived from a Goethite Waste.” Journal of the American Ceramic Society, Vol. 82, pp. 1313-1317, 1999.
Romero, M.; Rincón, J. M.; Rawlings, R. D.; Bocaccini, A. R. “Use of Vitrified Urban Incinerator Waste as Raw Material for Production of Sintered Glass-Ceramics.” Materials Research Bulletin, Vol. 36, pp. 383-395, 2001.
Scarinci, G.; Brusatin, G.; Barbieri, L.; Corradi, A.; Lancellotti, I.; Colombo, P.; Hreglich, S.; Dall’Igna, R. “Vitrification of Industrial and Nature Wastes with Production of Glass Fibers.” Journal of the European Ceramic Society, Vol. 20, pp. 2485-2490, 2000.
Schoket, B. “DNA Damage in Human Exposed to Environmental and Dietary Polycyclic Aromatic Hydrocarbons.” Mutation Research, Vol. 424, pp. 143-153, 1999.
Sheng, J. “Vitrification of Borate Waste from Nuclear Power Plant Using Coal Fly Ash (I) Glass Formulation Development.” Fuel, Vol. 80, pp. 1365-1369, 2001.
Shimaoka, T.; Hanashima, M. “Behaviour of Stabilized Fly Ashes in Solid Waste Landfills.” Waste Management, Vol. 16, pp. 545-554, 1996.
Smedley, J. M.; Williams, A.; Bartle, K. D. “A Mechanism for the Formation of Soot Particles and Soot Deposits.” Combustion and Flame, Vol. 91, pp. 71-82, 1992.
Spence, R. D.; Gilliam, T. M.; Mattus, C. H.; Mattus, A. J. “Laboratory Stabilization / Solidification of Surrogate and Actual Mixed – Waste Sludge in Glass and Grout.” Waste Management, Vol. 19, pp. 453-465, 1999.
Taylor, C. J. S. O; Russell, H. “Blackwater Fever and Naphthalene Poisoning.” African Medicinal Journal, Vol. 5, pp. 48-49, 1932.
Ten-Brink, H. M.; Enekhoorn, S.; Hamburg, G. J. “Fine Silica from Included Quartz in Pulverized-Coal Combustion.” Journal of Aerosol Science, Supplement 26, pp. s673-674, 1995.
Thakur, R. S.; Sant, B. R. “Utilization of Red Mud: Part I- Analysis and Utilization as Raw Material for Absorbents, Building Materials, Catalysts, Filter, Paints and Pigments.” Journal of Science and Industrial Research, Vol. 42, pp. 87-108, 1983.
Thevenin, G.; Pera, J. “Interaction between Lead and Different Binders.” Cement Concrete Research, Vol. 29, pp. 1605-1610, 1999.
Tong, H.Y.; Karasek, F. K. “Comparison of PCDD and PCDF in Fly Ash Collected from Municipal Incinerators of Different Countries.” Chemosphere, Vol. 15, pp. 1219-1224, 1986.
Tsai, J. H.; Jenq, F. T.; Lee, C. C. “PAH Characteristics in Ambient Air within a Steel Industrial Complex.” Toxicological and Environmental Chemistry, Vol. 53, pp. 127-136, 1996.
Tuominen, J.; Salomaa, S.; Pyysalo, H.; Skytta, E.; Tikkanen, L.; Nurmela, T.; Sorsa, M.; Pohjola, V.; Sauri, M.; Himberg, K., “Polynuclear Aromatic Compounds and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic, Season, and Meteorological Conditions.” Environmental Science and Technology, Vol. 22, pp. 1228-1234, 1988.
Vogel, W. Glass Chemistry, Springer-Verlag, New York, 1992.
Wall, T. F.; Lowe, A.; Stewart, I. M. Prog. Energy Combustion Science, Vol. 5, pp. 1, 1979.
Wey, M.Y.; Chao, C.Y.; Yu, L. J. “The Influence of Heavy Metals on PAHs Formation during Incineration.” Toxicological and Environmental Chemistry, Vol. 56, pp. 35-45, 1996.
Wey, M. Y.; Chao, C. Y.; Wei, M. C.; Yu, L. J.; Liu, Z. S. “The Influence of Heavy Metals on Partitioning of PAHs during Incineration.” Journal of Hazardous Materials, Vol. A77, pp.77-87, 2000.
Wibberley, L. J.; Wall, T. F. “An Investigation of Factors Affecting the Physical Characterization of Flyash Formed in Laboratory Scale Combustor.” Combustion Science and Technology, Vol. 48, pp. 177-190, 1986.
Wiles, C. C. “Municipal Solid Waste Combustion Ash: State of knowledge.” Journal of Hazardous Materials, Vol. 47, pp. 325-344, 1996.
Wilhelm, J.; Stieglitz, L.; Dinjus, E.; Will, R. “Mechanistic Studies on the Role of PAHs and Related Compounds in PCDD/Fs Formation on Model Fly Ashes.” Chemosphere, Vol. 42, pp. 792-802, 2001.
Williamson, P. “Production and Control of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Incineration Systems.” A Review, Presented at Proc. 87th AWMA Annual Meeting &Exhibition, Ohio, June pp. 19-24, 1994.
Wolf, O. “Carcinoma of the Larynx in Naphthalene Workers.” Gesamte Hygiene, Vol. 24, pp. 737-739, 1978.
Wu, H.; Wall, T.; Liu, G. and Bryant, G. “Ash Liberation from Induced Minerals during Combustion of Pulverized Coal: The Relationship with Char Structure and Burnout.” Energy and Fuels, Vol. 13, pp. 1197-1202, 1999.
Wu H.; Bryant, G. and Wall, T. “The Effect of Pressure on Ash Formation during Pulverized Coal Combustion.” Energy and Fuels, Vol. 14, pp. 745-750, 2000.
Wunsch, P.; Greilinger, C.; Bieniek, D.; Kettrup, A. “Investigation of the Binding of Heavy Metals in Thermally Treated Residues from Waste Incineration.” Chemosphere, Vol. 32, pp. 2211-2218, 1996.
Zuelzer. W. W.; Apt, L. “Acute Hemolytic Anemia due to Naphthalene Poisoning.” Journal of American Medical Association, Vol. 141, pp. 185-190, 1949.
王鯤生, 張旭彰 “垃圾焚化灰渣熔融處理操作特性之研究” 中華民國環境工程學會第七屆廢棄物處理研討會, pp. 281-295, 1992.
王鯤生, 江康鈺, 葉宗智, 林仕敏 “都市垃圾焚化灰渣重金屬濃度及TCLP溶出之評估” 第十一屆廢棄物處理技術研討會, pp. 68-76, 1996.
王琳麒 “石化廢棄物焚化爐排放多環芳香烴化合物特性之研究” 國立成功大學環境工程研究所碩士論文, pp. 71-86, 1997.
古進全 “石化區及都會區大氣中多環芳香烴化合物特性之研究” 國立成功大學環境工程研究所碩士論文, pp. 90-112, 1993.
賴俊雄, 郭錦堂, 吳聰能 “多環芳香族化合物(PAHs)勞工暴露調查” 行政院勞工委員會, pp. 19-22, 1992.
朱瑾, 宋威岳, 曾錦清, 郭永言, 余玉正 “石化產業廢料及模擬放射性廢料電漿玻璃化處理技術之研究” 中華民國環境工程學會第十四屆廢棄物處理研討會, pp. 1-15, 1999.
行政院環境保護署, 污泥及沉積物之酸消化法, NIEA R109.01C, 2000.
行政院環境保護署, 事業廢棄物毒性特性溶出程序, NIEA R201.12C, 2001.
行政院環境保護署, 事業廢棄物溶出液中汞檢測方法-冷蒸氣無焰式原子吸收光譜法, NIEA R314.11C, 2001.
行政院環境保護署, 91年垃圾資源回收(焚化)廠灰渣量統計查詢表, http://ww2.epa.gov.tw/swims.
行政院環境保護署, 鼓勵公民營機構興建營運垃圾焚化廠推動方案, http://ww2.epa.gov.tw/swims.
行政院環境保護署, 中華民國台灣地區環境保護統計月報176期, http://www.epa.gov.tw/statistics/統計指標/content.htm.
卓英仁, 高理智, 李明禹, 楊仁泊 “電漿熔融技術在廢棄物處理方面的應用” 中華民國環境工程學會第十屆廢棄物處理研討會, pp. 455-461, 1995.
曾錦清, 郭永言, 黃財富, 林登連, 余玉正 “放射性廢料焚化熔融處理技術” 中華民國環境工程學會第十一屆廢棄物處理研討會, pp. 375-384, 1996.
曾豐益 “垃圾焚化飛灰及灰渣中重金屬之濃度與分佈之探討” 碩士論文, 國立中央大學研究所, 1994.
張祇祥, 蔡振球, 孫常榮, 逾岳峰, 王鯤生 “廢棄物焚化底灰燒結材料化之可行性研究” 中華民國環境工程學會第十四屆廢棄物處理研討會, pp. 88-95, 1999.
陳宏鉻, 歐陽嶠暉 “都市下水污泥餅熔融特性及熔渣材料化之基礎研究” 中華民國環境工程學會第七屆廢棄物處理研討會, pp. 297-310, 1992.
楊萬發 “垃圾焚化灰燼特性分析及其處置方式之探討(I-II)” 國科會研究報告, 1990.
廖錦聰, 張蕙蘭, 徐文慶, 黃契儒 “垃圾焚化底灰之資源化利用” 一般廢棄物焚化灰渣資源化技術與實務研討會論文集, 台北, pp. 131-146, 1996.
顧順榮, 鍾昀泰, 張木彬 “台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估” 第十屆廢棄物處理技術研討會論文集, 台南, pp. 271-279, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊