跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/03 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃旭群
研究生(外文):Xu-Qun Huang
論文名稱:上流式厭氣污泥床(內部曝氣去除硫化物)處理製革廢水
論文名稱(外文):Treatment of Sulfate-Leaden Tannery Wastewater by UASB Reactors(with Internal Sulfide Oxidation)
指導教授:黃汝賢黃汝賢引用關係林達昌
指導教授(外文):Ju-Sheng HuangTa-Chang Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:COD/SO42-比硫酸鹽還原菌動力模式模式驗證COD降解氧化還原電位製革廢水UASB反應器內部曝氣操作硫化物
外文關鍵詞:model validationkinetic modelCOD degradationoxidation-reduction potentialinternal sulfide oxidationsulfidesCOD/SO42- ratiosulfate-reducing bacteriatannery wastewaterupflow anaerobic sludge bed reactor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
  本研究使用四組迴流操控之上流式厭氣污泥床(UASB)反應器(表面流速us = 2.0 m/h,溫度 = 35℃)處理含硫酸鹽之製革廢水。四組UASB反應器在體積負荷率(VLR) 1.06、2.12、3.17及4.23 kg COD/m3-d(COD/SO42- = 0.7)及未內部曝氣(ORP = -375 ~ -395 mV)之操作條件下,COD去除率為86.7∼88.0%,出流水中硫化物及H2S濃度(屬厭氣微生物之抑制性物質)分別為303∼311及31∼44 mg S/L。

  四組UASB反應器在上述VLRs(COD/SO42- = 0.7)但改以內部純氧曝氣(儀控自動間歇曝氣)操作方式,並使UASB反應器污泥床與污泥層交界處之ORP維持在-320、-300及-280 mV之操作條件下,出流水中硫化物及H2S濃度皆隨著ORP之增加而顯著下降(譬如:ORP 控制在-280 mV時,UASB反應器中硫化物及H2S濃度幾乎完全去除),有助於UASB反應器處理性能之提升,惟原未曝氣之UASB反應器系統中硫化物及H2S對反應器內厭氣微生物之抑制並不明顯,故內部曝氣操作方式對COD去除率之提升亦有限。

  在未曝氣操作且體積負荷率相近之二組UASB反應器中,當進流之COD/SO42-比由0.7降低為0.5時,COD之去除主要是藉由硫酸還原菌(SRB)代謝分解,且厭氣微生物會受到頗明顯的硫化物抑制作用。此外,在曝氣操作( ORP = -280 mV)且體積負荷率相近之二組UASB反應器(進流之COD/SO42-比分別為0.7及0.5;VLR分別為2.12及2.22 kg COD/m3-d)中,二者之出流水硫化物及H2S濃度皆檢測不出,後者SRB對COD去除之貢獻度(90.1%)亦明顯高於前者SRB對COD去除之貢獻度(48.4~50.0%)。

  UASB反應器(未曝氣操作或曝氣操作) 之污泥顆粒粒徑(dp) (weighted mean = 1.22 ~ 1.64 mm)隨著體積負荷率之增加而增大,且UASB反應器污泥床中,愈往下層之污泥顆粒粒徑愈大。上述結果顯示UASB反應器(未曝氣操作或曝氣操作)處理製革廢水時,可有效地使污泥達到顆粒化。

  經獨立批次實驗,求得之製革廢水厭氣降解Monod型動力常數k及Ks分別為1.23 mg COD/mg VSS-d及193 mg COD/L。經UASB反應器實際操作所得之實驗結果驗證可知,本研究提出之UASB反應器動力模式COD殘餘濃度之模式模擬值與實驗值頗為吻合(誤差在±5%範圍以內),故可適切地被用來預測UASB反應器處理含硫酸鹽製革廢水之出流水質。
  Four upflow anaerobic sludge bed (UASB) reactors with effluent recycle (superficial velocity us = 2.0 m/h, operating temperature = 35℃) were used to treat sulfate-laden tannery wastewater. At the volumetric loading rates (VLRs) of 1.06, 2.12, 3.17, and 4.23 kg COD/m3-d (COD/SO42- = 0.7) and without internal sulfide oxidation (ORP = (-375)-(-395) mV), the COD removal efficiencies were 86.7-88.0% and the sulfides and unionized H2S effluent concentrations (i.e., an inhibitory substance onto anaerobic microorganisms) were 303-311 and 31-44 mg S/L, respectively.

  Thereafter, the afore-mentioned four UASB reactors were operated at the VLRs of 1.06, 2.12, 3.17, and 4.23 COD/m3-d (COD/SO42- = 0.7) and with internal sulfide oxidation by pure oxygen (i.e., intermittent aeration regulated by automated devices). By maintaining three ORP levels (at the interface between sludge-bed zone and sludge-blanket zone ) at -320, -300, and -280 mV, the sulfides and unionized H2S effluent concentrations declined markedly (e.g., at an ORP of -280 mV, sulfides and unionized H2S generated in the UASB reactors were almost completely removed), which would be beneficial to the performance of the UASB reactors. Because only a slight bacteria-inhibiting effect occurred in the UASB reactors (without internal sulfide oxidation), the performance enhancement of the UASB reactors with internal sulfide oxidation was insignificant.

  When the influent COD/SO42- ratio was decreased from 0.7 to o.5 in the two UASB reactors operated at similar VLR and without internal sulfide oxidation, the removal of COD was mainly caused by sulfate-reducing bacteria (SRB) which was somewhat inhibited by sulfides and unionized H2S. In addition, when the influent COD/SO42- ratios were maintained at 0.7 and 0.5 in the two UASB reactors operated at similar VLR (2.12 and 2.22 kg COD/m3-d) and with internal sulfide oxidation (ORP = -280 mV), the sulfides and unionized H2S effluent concentrations in the two UASB reactors were not detectable, but the COD removal by SRB of the latter (90.1%) was significantly higher than that of the former (48.4-50.0% ).

   The granule diameter (dp) (weighted mean = 1.22-1.64 mm ) of the UASB reactors (without and with internal sulfide oxidation ) increased with increasing VLR. The dp in the lower-part of the sludge-bed zone appeared to be larger than that in the upper-part of the sludge-be zone. This implied that sludge granulation occurred in the UASB reactors (without and with internal sulfide oxidation) when sulfate-laden tannery wastewater was treated.

  Form an independent batch experiment, the estimated Monod kinetic constants k and Ks of anaerobic degradation of tannery wastewater were 1.23 mg COD/mg VSS-d and 193 mg COD/L, respectively. By placing the operating conditions and biological and physical parameter values into the kinetic model, the simulated residual COD concentrations were ±5% deviated from the experimental results. Accordingly, the validated kinetic model can be used to predict effluent quality of the UASB reactor when sulfate-laden tannery wastewater was treated.
中文摘要 I
英文摘要 III
目 錄 V
圖 目 錄 IX
表 目 錄 X
符號說明 XI

第一章 緒 論 1
1–1 研究動機 1
1–2 研究目的 3

第二章 文獻回顧 4
2–1 製革廢水污染物特性 4
2–2 UASB反應器特性及設計準則 5
2-2-1 特性 5
2-2-2 流況 6
2-2-3 設計準則 7
2–3 厭氣生物反應器處理含硫酸鹽之有機廢水 9
2-3-1 UASB反應器 9
2-3-2 其他反應器 12
2-4 UASB反應器之污泥顆粒特性 13
2-4-1 顆粒化之機制 13
2-4-2 顆粒之結構及組成 16
2-4-3 顆粒粒徑之分析 17
2–5 厭氣代謝反應機制 18
2–6 厭氧代謝中之硫酸鹽還原作用 23
2–7生物動力 25
2-7-1 Michaelis-Menten Kinetics 26
2-7-2 Monod Kinetics 29
2-7-3 Lawrence and McCarty Kinetics 29
2–8 影響厭氣生物程序穩定性之因素 31

第三章 UASB反應器動力模式 36
3–1 動力模式之推導 36
3-1-1 假設條件 36
3-1-2 動力模式 36
3-1-3 效益因子 37
3-1-4 UASB反應器質量平衡式 38
3–2 數值分析 38

第四章 實驗設備與方法 40
4–1 實驗設備 40
4-1-1 UASB反應器 40
4-1-2 COD降解之血清瓶反應器 40
4-1-3 儀器設備 42
4–2 實驗方法 43
4-2-1 製革廢水水質特性 43
4-2-2 UASB反應器之植種、馴化及起動 44
4-2-3 UASB反應器(試程一/未曝氣操作)處理製革廢水試程之操作 44
4-2-4 UASB反應器(試程二/曝氣操作)處理製革廢水試程之操作 45
4-2-5 UASB反應器(試程三)處理製革廢水試程之操作 45
4-2-6 批次反應器(內部曝氣)去除硫化物之操作 46
4-2-7 COD厭氣降解(混合菌) Intrinsic動力常數之測定 46
4–3 實驗分析方法及儀器 47
4-3-1 生物動力常數之迴歸分析方法 47
4-3-2 水質分析 47
4-3-3 ORP監測及控制方法 47
4-3-4 生物產氣分析 (CH4、CO2、N2) 48
4-3-5 進、出流水有機物成分之分子量分佈測定 48
4-3-6 污泥顆粒特性分析 50

第五章 結果與討論 54
5–1 UASB反應器(未曝氣操作)處理製革廢水之性能 54
5–2 UASB反應器(曝氣操作)處理製革廢水之性能 56
5-2-1 ORP操作監測結果 57
5-2-2 批次反應器(曝氣操作)去除硫化物實驗 57
5-2-3 處理性能 59
5-2-4 改變COD/SO42-對處理性能之影響 61
5–3 UASB反應器之污泥顆粒特性 63
5–4 UASB反應器進、出流水有機物成分之分子量分佈 64
5–5 COD厭氣降解(混合菌)動力常數 68
5–6 模式模擬與驗證 68

第六章 結 論 71

參考文獻 73
誌 謝 80
Agrawal, L. K., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H., Ohashi, A. (1997). Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Water Sci. Technol., 83, 179-184.

Alphenaar, P. A., Visser, A., Lettinga, G. (1993). The effect of liquid upflow veolocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Biores. Technol., 43, 249-258.

American Public Health Association (1998). Standard methods for the examination of water and wastewater. 20th ed., USA.

Andrews, J. F. (1969). Dynamic model of the anaerobic digestion process. J. Sanitary Eng. Div. (ASCE) 95, 95-116.

Annachhatre, A. P., Suktrakoolvait, S. (2001). Biological sulfate reduction using molasses as a carbon source. Water Res., 73 (1), 118-126.

Aris, R. (1957). On shape factors for irregular particles: The steady state problem, diffusion and reaction. Chem. Eng. Sci., 6, 262-268.

Bailey, J. E., Ollis, D. F. (1986). Biochemical engineering fundamentals. 2nd ed. McGraw–Hill, New York.

Barbosa, R. A., Santanna Jr, G. L. (1989). Treatment of raw domestic sewage in an UASB reactor. Water Res., 23 (12), 1483-1490.

Boone, D. R., Worakit, S., Mathrani, I. M., Mathrani. R. A. (1986). Alkaliphlic methanogens from high-pH lake sediments. J. Systematic Appl. Microbiol., 7, 230-234.

Bryant, M. P., Wolin E. A., Wolfe, R. S. (1967). Methanobacillus omelianskii, a symbiotic assoiation of two species of bacteria. Arch. Microbiol. 59, 20-31.

Cail, R. G., Barford, J. P. (1985). The development of granulation in an upflow floc digester and upflow anaerobic sludge blanket digester trreating cane juice stillage.
Biotechnol. Lett., 7(7), 493-498.

Campos, C. M. M., Anderson, G. K. (1992). The effect of the liquid upflow velocity and substrate concentration on the start-up and steady-state periods of lab-scale UASB reactors. Water Sci. Technol., 25, 41-50.

Choi, E., Rim, J. M. (1991). Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci. Technol., 23, 1259-1264.

Danac, M., Miguel, A., Dunn, I. J. (1988). Modeling dynamic experiment on anaerobic degradation of molasses. Biotechnol. Bioeng., 31, 1-10.

Dangcong, P., Xingwen, Z., Qiting, J., Liangkui, X., De, Z. (1994). Effect of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Technol. Biotechnol., 60 (6),171-176.

Dirasian, H. A., Molof, A. H., Borchardt. J. A. (1963). Electrode potential in digestion. J. Water Pollut. Control Fed., 35, 424-437.

Dudley, B. T., Howgrave-Graham, A. R., Bruton, A. G., Wallis F. M. (1993) Image analysis to quantify and measure UASB digester granule. Biotechnol. Bioeng., 42, 83-90.

Fang, H. H. P., Liu, Y., Chen, T. (1997). Effect of sulfate on anaerobic degradation of benzoate in UASB reactors. J. Envin. Eng. (ASCE), 123 (4), 320-328.

Fang, H. H. P., Li, Y. Y., Chui, H. K. (1996). Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res., 30, 1353-1360.

Fang, H. H. P., Li, Y. Y., Chui, H. K. (1995). UASB treatment of wastewater with concentrated mixed VFAs. J. Environ. Eng. (ASCE), 121, 153-160.

Fang, H. H. P., Li, Y. Y., Chui, H. K. (1995a). Microstrutural analysis of UASB granules treating brewery wastewater. Water Sci. Technol., 31, 129-135.

Fang, H. H. P., Li, Y. Y., Chui, H. K. (1994). Microbial structure and activity of UASB granules treating different wastewaters. Water Sci. Technol., 30, 87-96.

Fukuzaki, S., Chang, Y., Nishio, N., Nagai, S. (1991). Characteristics of granular methanogenic sludge grown on lactate in a UASB reactor. J. Ferment. Bioeng., 72, 465-472.

Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., Zehuder, A. J. B. (1991). Role of substrate concentration in particle size distribution of methanogenic granule in
UASB reactors. Water Res., 25 (1), 21-27.

Guiot, S. R., Pauss, A., Costerton, J. W. (1992). A structured model of the anaerobic granule consortium. Water Sci. Technol., 25, 1-10.

Gujer, W. and Zehnder, A. J. B. (1983). Conversion processes in anaerobic digestion. Water Sci. Technol., 15, 127-167.

Harada, H., Uemura, S., Momonoi, K. (1994). Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res., 28 (2), 355-367.

Harper, S. R., Pohiland, F. G. (1986). Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng., 28, 285-602.

Heertjes, P. M., Kuijvenhoven, L. J. (1982). Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioeng., 24 (2), 443-459.

Heertjes, P. M., Van der Meer, R. R. (1978). Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnol. Bioeng., 20 (10), 1577-1594.

Henshaw, P. F., Bewtra, J. K., Biswas, N. (1998). Hydrogen sulphide conversion to elemental sulpher in a suspended-growth continuous stirred tank reactor using Chlorobium limicola. Water Res., 32 (6), 1769-1778.

Hines, A. L., Maddox, R. N. (1985). Mass transfer fundamentals and applications. Prentice-Hall, New Jersey.
Huang, J. C., Ray, B. T., Huang, Y. J. (1989). Sludge digestion by anaerobic fludized beds. J. Environ. Eng. (ASCE) 115, 1139-1155.

Jih, C. G., Huang, J. S., Huang, S. Y. (2003). Process kinetics of upflow anaerobic sludge bed reactors treating inhibitory substrate. Water Environ. Res., 75, 5-14.

Khanal, S. K., Huang, J. C. (2003). ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res., 37, 2053-2062.

Kosaric, N., Blaszczyk, R., Orphan, L. (1990a). Factors influencing formation and maintenance of granules in anaerobic sludge blanket reactors. Water Sci. Technol., 9, 275-282.

Lens, P. N. L., Visser, A., Janssen, A. J. H., Hulshoff Pol, L. W. and Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environ. Sci. Technol., 28 (1), 41-88.

Lettinga, G., Hulshoff Pol, L. W. (1991). UASB-process design for various types of wastewaters. Water Sci. Technol., 24, 87-107.

Lettinga, G., Hobma, S. W., Hulshoff Pol, L. W., de Zeeuw, W., de Jong, P. (1986). Design operation and economy of anaerobic treatment. Water Sci. Technol., 15(8), 175-195.

Lettinga, G. (1980). Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. and
Bioeng., 22, 669-737.

MacLeod, F. M., Guiot, S. R., Costerton, J. W. (1990). Layered structure of bacterial aggregrate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbol., 56, 1598-1607.

Maestrojuan, G. M., Boone, D. R. (1991). Characterization of Methanosarcina barkeri MS and Methanosarcina vacuolata. International J. Systematic Bacteriol., 41, 267-274.

Maree, J. P. and Strydom, W. F. (1987). Biological sulfate removal from industrial effluent in an upflow packed bed reactor. Water Res., 21 (2), 141-146.

McCartney, D. M., Oleszkiewicz, J. A. (1991). Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res., 25 (2), 203-209.

McCartney, D. M., Oleszkiewicz, J. A. (1993). Competition between methanogens and sulfate reducers: Sulfate ratio and acclimation. Water Res., 65 (5), 655-664.

Morgan-Sagastume, J. M., Jimenez, B., Noyala, A. (1997). Trace studies in a labaratory and pilot-scale UASB reactor. Envir. Technol., 18, 817-825.

Morvai, L., Mihalta, P., Czako, L., Peterfy, M., Hollo, J. (1990). The influence of organic load on granular sludge development in an acetate-fed system. Appl. Microbiol.
Biotechnol., 33 (7), 463-486.

Oleszkiewicz, J. A., Romanek, A. R. (1989). Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes., 27 (3), 217-235.

Omil, F., Lens, P., Pol, L. H., Lettinga, G. (1996). Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem., 31 (7), 699-710.

Ozturk, S. S., Palsson, B. O. (1989). Control of interspecies electron transfer flow during anaerobic digestion. Biotechnol. Bioeng., 33, 745-757.

Parkin, G. F. and Speece, R. E. (1983). Attached versus suspended growth anaerobic reactors: Response to toxic substances. Water Sci. Technol., 15, 261-289.

Pohland, F. G., Suidan, M. T.(1987). Prediction of pH stability in biological treatment systems. Chem. Wastewater Technol., 23, 441-463.

Postgate, J. R. (1984). The sulfate reducing bacteria. Cambridge University Press, UK.

Press, W. H., Flannery, B. P., Tenkolsky, S. A., Vetterling, W. T. (1986). Numerical recipes: The art of scientific computing. Cambridge University Press, London.

Schauer, N. L., Brown, D. P., Ferry, J. G. (1982) Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei. Appl. Environ. Microbiol., 44, 549-554.

Schmidt, J. E., Ahring, B. K. (1996). Granular sludge formation in upflow anaerobic sludge blanket reactors (UASB). Biotechnol. Bioeng., 49 (2), 229-246.

Speece, R. E. (1970). The effect of short-term temperature variation on methane production. J. Water Pollut. Control Fed., 42, 241-256.

Stephenson, R. J., Branion, R. M. R., Pinder, K. L. (1994). Anaerobic 35℃ and 55℃ treatment of BCTMP/TMP effluent: Sulpuer management strategies. Water Sci. Technol., 29, 433-445.

Tay, J. H., Yan, Y. G. (1996). Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Envir. Res., 68 (12), 1144-1150.

Thauer, R. K., Jungermann, K., Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 41, 100-180.

Tunay, O., Kabdasli, I., Orhon, D. (1995). Characterization and pollution profile of leather tanning industry in Turkey. Water Sci. Technol., 32 (12), 1-9.

Van Lier, J. B., Grolle, K. C. F., Stams, A. J. M., Lettinga, G. (1992). Start-up thermophilic upflow anaerobic sludge bed (USAB) reactor with mesophlic granular sludge.
Appl. Microbiol. Biotechnol., 37(3), 130-135.

Visser, A., Hulshoff Pol, L. W., Lettinga, G. (1996). Competition of methanogenic and sulfidogenic bacteria. Water Sci. Technol., 33 (3), 99-110.

Wallis, F. M. (1993). Image analysis to quantify and measure UASB digester granules. Biotechnol. Bioeng., 42, 279-283.

Westrich, J. T., Berner, R. A. (1988). The effect of temperature on rates of sulfate reducing in marine sediments. Geomicrobiol. J., 6, 99-117.

Yamaguchi, T., Harada, H., Hisano, T., Yamazaki, S., Tseng, I. C. (1999). Process behavior of UASB reactor treating a wastewater containing high strength sulfate. Water Res., 33 (14), 3182-3190.

Yoda, M., Kitagawa, M., Miyaji, Y. (1987). Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Res., 21 (12), 1547-1556.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top