跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯家宇
研究生(外文):Chia-Yu Ko
論文名稱:重金屬污泥鐵氧磁體安定化之研究
論文名稱(外文):Stabilization of Heavy Metal-Containing Sludge by Ferrite Process
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:TCLP重金屬污泥鐵氧磁體化安定化
外文關鍵詞:TCLPStabilizationFerrite processHazardous heavy metal comtaining sludge
相關次數:
  • 被引用被引用:12
  • 點閱點閱:720
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
  傳統重金屬廢水大多以化學沈澱法形成污泥,污泥中重金屬主要以氫氧化物型態存在,再以水泥固化進行最終處置,但固化體體積龐大,且若重金屬水泥固化體長期在酸性環境中,污泥中大量重金屬氫氧化物易與H+反應而造成固化體崩解,導致重金屬有再溶出疑慮;因此重金屬污泥無害化處理技術應著重於穩定機制改善,以增加重金屬污泥在環境中的長期穩定性;鐵氧磁體法為一有效處理重金屬廢水及實驗室廢液的方法,處理後污泥形成之鐵氧磁體並無後續重金屬再溶出問題,且具有磁性特性以利後續再利用,因此本研究利用污泥所含大量鐵鹽,分別以鐵氧磁體水熱合成法及高溫合成法處理實際污泥,比較其鐵氧磁體安定化效果,並以高溫合成法處理單一重金屬(銅、鋅、鎳、鉻)模擬污泥及多種重金屬模擬污泥,以探討模擬污泥之安定化效果,並進ㄧ步比較高溫合成法處理模擬污泥與實際污泥安定化效果之差異。
  研究結果顯示水熱合成法(Hydrothermal reaction)於70℃、pH=11、曝氣速率4L/min/L操作條件下處理含重金屬污泥,控制鐵與重金屬莫耳比(Fe/M)=4、8、12、16,由X光繞射分析(XRD)、飽和磁化量(Ms)及毒性特性溶出試驗(TCLP)結果可知,水熱合成法處理後污泥雖產生具磁性之鐵氧磁體,雖對污泥具安定化效果,惟TCLP銅溶出值仍遠高於法規標準 15 mg/L;實際污泥經高溫合成法於800℃,控制不同Fe/M比(1.7、3.5、5.5、7.5)及不同持溫時間處理後,熱重分析(TGA)雖顯示持溫開始時重量已穩定,由XRD及Ms亦可看出有磁性之鐵氧磁體產生,且磁性隨Fe/M升高而降低;且Fe/M>3.5經高溫合成法持溫時間15小時處理後,實際污泥TCLP銅溶出值皆符合法規標準。
  單一重金屬(Cu、Zn、Ni、Cr)模擬污泥及多種重金屬模擬污泥經高溫合成法(溫度800℃,Fe/M=3.5)處理後,TGA結果顯示於持溫階段污泥重量皆已達穩定,由XRD及Ms可知單一重金屬模擬污泥除鉻模擬污泥外,其餘銅、鋅、鎳模擬污泥皆形成鐵氧磁體,且TCLP溶出值皆顯示隨持溫時間增加有助於其安定化效果;而鉻模擬污泥經高溫合成法處理後形成(Fe0.6Cr0.4)2O3,且TCLP溶出值則隨持溫時間增加有些微上升,有超過法規標準之疑慮;多種重金屬模擬污泥經高溫合成法處理後,TGA亦顯示於持溫階段重量即穩定,由XRD及Ms可知形成具磁性之鐵氧磁體,而TCLP鋅溶出值比單一鋅模擬污泥時低,銅溶出值比單一銅模擬污泥時高,鉻溶出值則低於偵測極限,顯示於高溫合成法處理多種重金屬模擬污泥時相較於單一銅模擬污泥安定化效果較差。
  銅模擬污泥與實際污泥(Fe/M皆為3.5)經高溫合成法處理後皆有磁性及鐵氧磁體產生,且持溫時間增加亦有助於安定化效果,但銅模擬污泥於持溫3小時TCLP溶出值則符合法規標準,而實際污泥於持溫10小時以上TCLP溶出值始符合法規標準。綜合上述結果顯示此法對重金屬污泥安定化具有良好之效果,經處理後污泥可進ㄧ步作為資源化材料,所具磁性特性並可增加其應用價值。
  Chemical precipitation is the most popular process in wastewater treatment among the available heavy metal removal processes. Generally, the heavy metals are precipitated in alkaline solution to form metal hydroxide sludge. But metals in the sludge may be released under acidic conditions and cause environmental hazards. Consequently, further treatments for the hazardous sludge are needed. Cement solidification is in common use for the harzardous sludge treatment. Nevertheless, a landfill site is needed for the final disposal of the cement solidification derivatives. Limited by the availability of landfill space, the cement solidification process becomes more and more expensive. Also, the cement solidification process always causes a negative effect of waste volume expansion, which is opposite to the reduction strategy in the integrated solid waste management. Therefore, the reuse of metal-containing sludge is a better alternative than the cement solidification process for the management of heavy metal-containing sludges. In this research, the actual sludge(high iron-containing) is utilized. The aim of this study is to use two different ferrite process, high temperature ferrite process and hydrothermal reaction ferrite process, to treat the sludge and compare the stability effect of two methods. High temperayure ferrite process is also utilized to treat single heavy metal simulated sludge (Cu-series、Zn-series、Ni-series、Cr-series) and multiple heavy metal simulated sludge to discuss the stability effect of simulated sludge.
  By TCLP (Toxicity Characteristic Leaching Procedure), XRD (X-ray diffraction) and saturated magnetization (Ms), the experimental results show that the hydrothermal reaction ferrite process, under the operational condition (T=70℃、pH=11、air flow rate=4L/min and Fe/metal (w/w) ratio=4、8、12、16), is applicable to the transformation of actual sludge into ferrite. The TCLP result of actual sludge after hydrothermal reaction ferrite process treatment is still over the regulatory standard (Cu: 15 mg/l). By high temperature (800 °C) ferrite process, the heavy metals in sludge are transferred to a more stabilized ferrite form. Ferrite forms has the advantages of high chemical stability and ferromagnetic property, which not only prevent the heavy metals from leaching out, but also could be used as environmental friendly materials. After high temperature ferrite process (800℃, Fe/metal molar ratio=1.7、3.5、5.5、7.5 and different isothermal time) treated, TGA results show that after the ramping step the weight is equilibrium. TCLP , XRD and Ms results show that the actual sludge is transformed into ferrite and possess magnetic properties, and the magnetic properties decrease as the Fe/metal molar ratio increases. After the high temperature ferrite process in specific operational condition (Fe/metal>3.5, isothermal time=15 hr) treated, the Cu TCLP results of actual sludge is all below the regulatory standard.
  The results also show that the high temperature ferrite process(800℃, Fe/metal=3.5) is applicable to the transformation of single heavy metal simulated sludge(Cu-series、Zn-series and Ni-series) and multiple heavy metal simulated sludge into ferrites. All the crystalline phases of these ferrites could be observed in the XRD patterns of sintered materials. And the TCLP results show that the heavy metal concentrations in leachate are below the regulatory standard. The simulated Cr-series sludge formed (Fe0.6Cr0.4)2O3 after the high temperature ferrite process treatment, and the TCLP value of Cr appears slightly increase as the increased isothermal time. After the high temperature ferrite process treated, the multiple heavy metal simulated sludge is transformed into ferrite and TGA results also show that the weight is equilibrium. After the high temperature ferrite process treated, both simulated copper sludge and actual sludge(Fe/metal =3.5) are transformed into ferrite and possess magnetic properties. By increasing the isothermal time, the stability effect is better. When the isothermal time is more than 3 hours, the Cu TCLP results of simulated Cu-series sludge is all below the regulatory standard, but when the isothermal time is more than 10 hours, the Cu TCLP results of actual sludge is just below the regulatory standard. According to these experimental results, ferrite process is applicable to treat the actual sludge and the magnetic properties can improve the application value.
目 錄
中文摘要 I
英文摘要 III
目錄 V
表目錄 VIII
圖目錄 IX

第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 2

第二章 文獻回顧 4
2-1 重金屬污泥來源及其處理處置 4
2-1-1重金屬污泥來源及性質 4
2-1-2重金屬污泥處理處置現況及其問題點 7
2-2 磁性理論 11
2-2-1磁性原理及磁性分類 11
2-2-2磁滯曲線與飽和磁化量 12
2-3 鐵氧磁體法 15
2-3-1鐵氧磁體結構及其基本原理 15
2-3-2鐵氧磁體安定化機制 18
2-4 鐵氧磁體法種類及其應用 19
2-4-1水熱合成法 19
2-4-2溶膠-凝膠法 26
2-4-3高溫合成法 27
2-4-4鐵氧磁體產品應用 31
2-5 小結 32

第三章 實驗材料、設備及方法 33
3-1 研究架構及實驗流程 33
3-2 實驗材料 36
3-3 污泥基本特性分析 37
3-4 水熱合成法處理重金屬污泥 38
3-5 高溫合成法處理重金屬污泥 39
3-5-1單一重金屬模擬污泥 39
3-5-2多種重金屬模擬污泥 41
3-5-3實際污泥 41
3-6 鐵氧磁體安定化處理後產物測試 42
3-6-1熱重分析(TGA) 42
3-6-2 X光繞射分析(XRD) 42
3-6-3飽和磁化量分析(Ms) 43
3-6-4毒性特性溶出試驗(TCLP) 43

第四章 結果與討論 45
4-1 水熱合成法 45
4-1-1實際污泥基本特性分析 45
4-1-2鐵氧磁體水熱合成法對實際污泥安定化效果 47
4-1-3小結 49
4-2 高溫合成法對模擬污泥處理效果 50
4-2-1銅模擬污泥安定化處理 50
4-2-2鋅模擬污泥安定化處理 54
4-2-3鎳模擬污泥安定化處理 58
4-2-4鉻模擬污泥安定化處理 61
4-2-5多種重金屬模擬污泥安定化處理 64
4-2-6小結 69
4-3 高溫合成法對實際污泥鐵氧磁體安定化 70
4-3-1原污泥鐵氧磁體安定化 70
4-3-2調質污泥鐵氧磁體安定化 73
4-3-3小結 78
4-4 鐵氧磁體法對污泥安定化效果比較 79
4-4-1水熱合成法與高溫合成法對實際污泥鐵氧磁體安定化效果 79
4-4-2高溫合成法對模擬污泥與實際污泥鐵氧磁體安定化效果 82
4-4-3小結 87

第五章 結論與建議 88
5-1 結論 88
5-2 建議 90
參考文獻 92
Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research 33(11), pp 2469-2479.
Barrado, E., Prieto, F., Vega, M., Ferandez-Polanco, F., 1998, Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation. Water Research. 32(10), pp 3055-3061.
Barth, E. F., 1990. An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment. Journal of Hazardous Materials 24, pp 103-109.
Bricka, R.M., 1988. Investigation and evaluation of the performance of solidified cellulose and starch xanthate heavy metal sludges. U.S. Army Corps of Engineers Waterway Experiment Station, Technical Report EL-88-5. Vicksburg, Mississippi.
Bryson, A.W., Dardis, K.A., 1980. Treatment of dilute metal effluents in an electrolytic precipitator. Water SA 6(1), pp 85-87.
Chen, H.T., Tsai, M.S., Chang, J.U., Lin, T.F., Hsiao, T.C., Wu, C.C., Wu, C.Y., Chen, Y.S., 2003. Integration of Fenton Process and Ferrite Process in BTA / Zn Wastewater Treatment. Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology.
Cheng, K.Y., 1991. Controlling mechanisms of metal release from cement-based waste form in acetic acid solution. Ph.D. Disseration, University of Cincinnati, Cincinnati, OH.
Choi, Y. and Cho, I., 1999, The formation of Ni-Zn ferrites through self-propagating high-temperature synthesis. Journal of Materials Science Letters. 18, pp 655-658.
Cornell, R.M. and Schwertmann, U., 2003, The Iron Oxides: structure, properties, reactions, occurrences, and uses., Wiley-VCH, Weinheim.
Cussler, E., Kopinsky, J., and Weimer, J., 1981. The effect of pore diffusion on the dissolution of porous mixtures. Chemical Energy Science 38, pp 2027-2033.
Drofenik, M., Znidarsic, A., Kristl, M., Makovec, D., 2003, Dispersant-assisted hudrothermal synthesis on MnZn ferrites from raw oxides. Journal of Materials Science. 38, pp 3063-3067.
Feitknecht, W. and Elektrochem, Z.,1959,Vol. 63, pp 34-43.
Georgescu, G., Malaeru, T., Jitaru, I.,2001, The complexation reagents in synthesis by wet procedure of Cu and Zn mixed ferrites. Key Engineering Materials. 206-213(II), pp 1365-1368.
Inouye, K., 1968, The rule of copper(II)in the oxidation of ferrous hydroxide colloid with special reference to the corrosion of iron in an SO2-containing environment. J. of Colloid and Interface Science. 27(2), pp 171-179.
Itoh, S. and Azakami, T.,1995, Thermodynamic study on the zinc-iron-oxygen system at 1200K. Materials Transactions,JIM, 36(8), pp 1074-1080.
Jirgensons, M., Straumanis, M.E., 1962, Colloid Chemistry., McMillan Co. New York.
Kazinczy,B. , Kotai,L. , Gacs,I. , Sajo,I.E. , Sreedhar,B. , Lazar,K. 2003. Study of the Preparation of Zinc(II) Ferrite and ZnO from Zinc-and Iron-Containing Industial Wastes . Ind. Eng. Chem. Res. 42, pp 318-322.
Kiyama, M., 1974, Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions. Bulletin of the Chemical Society of Japan. 47(7), pp1646-1650.
Livage, J. and Henry, M., 1988, Ultrastructure Processing of Advanced Ceramics, Wiley, New York. pp 183.
Lopez-Delgado,A. and Lopez,F.A. , 1999. Synthesis of nickel-chromium-zinc ferrite powders from stainless steel pickling liquors . J. Mater. Res. 14(8), pp 3427-3432.
McCurrie, R.A., 1994. Ferromagnetic Materials. Academic Press Inc.,San Diego.
Menzel, M., Sepelak, V., Becker, L.D., 2001, Mechanochemical reduction of nickel ferrite. Solid State Ionics.141-142, pp 663-669.
Nakamura T., 1997, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. Journal of Magnetism and Magnetic Materials. 168, pp 285-291.
Nathalie, L., Eric,M., Jean-Marie, L., 2003. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy 70(1-3), pp 175-183.
Nikolic, A.S., Cvetkovic, N., Djuric, S., Puzovic, J., Pavlovic, M.B., 1998, Temperature influence on the composition of Ni-ferrite powders obtained complex compounds with acetylacetonato-ligands. Materials Science Forum 282-283, pp 199-202.
Okuda, T.,1975, Removal of heavy metals from wastewater by ferrite co-orecioitation. Filtration and Separation 12(5), pp 472-478.
Pandya, P.B., Joshi, H.H., Kulkarni, R.G., 1991, Magnetic and structural properties of CuFe2O4 prepared by the co-precipitation method. Journal of Materials Science Letters. 10, pp 474-476.
Patterson, J.W., 1981. Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc. Proceeding 36th Annual Industrial Waste Conference, Purdue University, pp 579-602. Purdue University, West Lafayette, Indiana.
Ristic, M., Hannoyer, B., Popovic, S., Music, S., Bajraktaraj, N., 2000, Ferritization of copper ions in the Cu-Fe-O system. Materials Science and Engineering B77, pp73-82.
Scattar, A.A., Wafik, A.H., Kandil, K.M.,1996, The effect of sintering temperature on microhardness and Barkhausen jumps of Ni and Mg ferrites. J.Phys.D:Appl.Phys. 29, pp 25-28.
Selvan, R.K., Augustin, C.O., Berchmans, L.J., Saraswathi, R., 2003, Combustion synthesis of CuFe2O4. Materials Research Bulletin. 38, pp 41-54.
Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry. John Wiley and Suns Third Edition.
Tamaura, Y., Katsura, S., Rojarayanont, S., Yoshida, T., Abe, H., 1991, Ferrite process;Heavy metal ions treatment system. Water Science and Technology. 23(10-12), pp 1893-1900.
Tamaura, Y., Tu, P.Q., Rojarayanont, S., Abe, H., 1991, Stabilization of hazardous materials into ferrites. Water Science and Technology. 23(1-3), pp 399-404.
Tao, S.,Gao, F.,Liu, X.,Sorensen, O.T., 2000, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Materials Science and Engineering B77, pp 172-176.
Tsuji, T.,1985, Ferrite-Technology Applications and Their Expansion from Electronics to Civil Engineering Fields. Inter. Conf. On Ferrites, PartI、II, pp 573-581.
清水康敬、西方敦博、丸山統雄、杉山 章,1986。ロみп⑦иャユджみォメ混合ウギЪяж周波數用ヵ⑦ヱэみЬ電波吸收體,Ъяжジヨ⑦學會誌,40(8),780-785。
奧田胤明、江間俊一、石先千春、藤本 淳,1991。坑水處理シиラьユЬソ大量利用技術ソ動向,NEC技報,44(5),4-16。
王振乾、張家源、米孝萱、陳啟榮、陳薇色、黃婉如、陳珮蓮,1999。螯合基側鏈對弱酸型樹脂去除重金屬的影響,第十四屆廢水處理技術研討會。
中興顧問社,1995。全省工業區污水處理統功能評估。
李宗立,1991,由重金屬污泥製造磁性粉末之方法(專利權證書號222252)。
李怡萱,2004。重金屬污泥處理產業經營模式之研究,中原大學企業管理學系碩士論文。
汪建民 等,1999。陶瓷技術手冊(上),中華民國粉末冶金協會。
林宗曾,1985。重金屬污泥之飛灰固化法研究,國立台灣大學環境工程研究所碩士論文。
林宗曾,1993。水泥固化╱穩定化氧化銅之反應機制與溶出行為,國立台灣大學環境工程研究所博士論文。
陳文泉,1992。重金屬廢水鐵氧磁體法處理之基礎研究,國立成功大學礦冶及材料科學研究所碩士論文。
陳政澤、賴重光、黃嘉宏、蔡啟明、張贊淵、黃家銘、曾善訓、黃姚玲、鄧瑞琴,2001。國內有害污泥現況分析與可行處理方式評估,第十六屆廢棄物處理技術研討會。
張祖恩、蔣立中、盧幸成、施百鴻、張益國,2003。重金屬污泥作為水泥替代原料可行性研究,第十八屆廢棄物處理技術研討會。
張益國,2003。黃酸鹽程序去除銅離子及其生成物之穩定性,國立成功大學環境工程學系博士論文。
張毓寬,2002。鉻污泥資源化基礎研究,國立成功大學資源工程研究所碩士論文。
巢志成、陳明德、王鑑恆,1997。汙泥之焚化處理技術,工業汙染防治,64卷,138-155。
陳慧英,1999。溶膠凝膠法在薄膜製程上之應用,化工技術第80期。
曾楹珍、郭昭吟、吳忠信、駱尚廉,2003。印刷電路板廠重金屬污泥特性分析及回收有價金屬之研究第十八屆廢棄物處理技術研討會。
黃契儒,1993。電鍍廢水鐵氧磁體化及前處裡研究,國立成功大學礦冶及材料科學研究所碩士論文。
黃智恆,2000。添加Cu-ferrite或Co-ferrite於燒結Fe3O4鐵氧磁體之磁阻研究,國立台灣大學材料科學暨工程研究所碩士論文。
黃鈺軫、杜秋慧、宮敏、林忠義、林傳倫、張景舜,2003。實驗室重金屬廢液鐵氧磁體化法處理之研究,第二十八屆廢水處理技術研討會 。
黃麟晴,2003。電子業含銅污泥鐵磁化法之研究,第十八屆廢棄物處理技術研討會。
劉定忠,1998,以事業廢棄物為軟磁導盲磚成份的製造方法(專利權證書號461830)。
樓基中、張健桂、涂耀仁,2003。以鐵氧磁體程序處理實驗室廢液,第十八屆廢棄物處理技術研討會。
顏雅侖,2002。錳鋅鐵氧化物磁性流體之製備及分散研究,國立成功大學資源工程研究所碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top