跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李曉雯
研究生(外文):Hsiao-Wen Li
論文名稱:基因多型性對職業苯暴露生物偵測之影響
論文名稱(外文):Effects of genetic polymorphism on the biological monitoring of occupational exposure to benzene
指導教授:張火炎張火炎引用關係
指導教授(外文):H-Y Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:NQO1GSTCYP2E1基因多型性生物偵測S-PMA血液異常動力學曲線
外文關鍵詞:Benzenegenetic polymorphismS-PMAbiological monitoringhematopoetic abnormalityGSTCYP2E1keneticsNQO1
相關次數:
  • 被引用被引用:1
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
苯為工業上常用的有機溶劑,目前苯的生物暴露偵測為量測尿中S-phenylmercapturic acid(S-PMA),而由苯本體代謝至S-PMA所需的酵素包括CYP2E1(Cytochrome P450 2E1)和GST(Glutathione S-transferase),另外過去文獻指出苯毒性主要是苯代謝過程之中間產物benzoquinone所致,其中間產物會導致骨髓毒性(myelotoxicity),影響benzoquinone代謝之酵素為NQO1之調控基因(NAD(P)H:Quinone Oxidoreductase)。CYP2E1、GST及NQO1等酵素之調控基因在人群中皆有基因多型性。因此個體間此類酵素之基因多型性,將可能影響體內苯的代謝情形及健康效應。本研究目的是探討苯代謝酵素CYP2E1以及GST之不同基因多型性對苯暴露之生物指標S-PMA之生物偵測與動力學曲線影響,並探討苯作業員工NQO1之基因多型性對苯暴露造成造血系統不正常所導致之前驅因子之關係。本研究選取國內之職業苯暴露石化業74位員工進行採樣,環境中苯暴露偵測是利用被動式採樣器採集個人作業現場空氣中苯,並以氣相層析儀(GC)火焰離子偵測器(FID)進行分析;生物偵測則是收取苯暴露員工血液、下班前尿液以及部分員工收取工作期間8小時與工作後24小時連續尿液,以高效能液相層析儀結合電灑法串聯式質譜儀 (high performance liquid chromatography- electrospray ionization tandem mass spectrometry, HPLC-ESI-MS/MS)分析尿中苯代謝物S-PMA之濃度,血液樣本則進行血液常規檢查及利用RFLP(Restriction fragment length polymorphism)判定CYP2E1及NQO1基因型,GSTT1及GSTM1則利用PCR(Polymerase chain reaction)進行基因型判定。研究結果發現1.空氣中苯濃度與尿中S-PMA濃度皆呈現對數常態分佈,幾何平均濃度分別為6.52ppb與0.39μg/g Cr,皆遠低於法規容許濃度值或BEI值,說明本研究之員工為低苯暴露族群。2.全部受測員工之空氣中苯濃度與下班前尿中單點S-PMA濃度值呈現顯著線性相關(r=0.39,P<0.01)。3.有參與上班8小時連續尿液收集者空氣中苯濃度與上班8小時期間尿中S-PMA之AUC(area under curve)呈現顯著相關(r=0.62,P <0.05),但與下班前單點尿中S-PMA濃度無關。4.下班後連續24小時尿中S-PMA之AUC在吸煙習慣不同者達顯著差異(P<0.05)。5. CYP2E1、GSTT1、GSTM1及NQO1的allele 頻率與文獻中臺灣人或中國人並無顯著差異,推論所選取的樣本尚足以代表台灣族群。6.下班前尿中S-PMA濃度與苯濃度之自然對數比值其GSTT1有效基因型(non-null)較無效基因型(null)顯著為高(P<0.05)。7. 尿中S-PMA濃度高低與各項血液常規檢查異常並無相關。 8. NQO1雙套變異型T/T較野生型C/C和單套變異型C/T紅血球數目異常之相對危險比顯著較高 (OR=24.4, 95%CI=3.4-173.4, P<0.05)。因此本研究之結論為1.發現苯的體內總負荷量與空氣中的苯濃度明顯較以單一下班前尿中S-PMA之關係為佳,因此未來在進行低苯暴露的生物偵測可考慮以一段時間之生物指標AUC來評估,較能獲得苯在體內完整的暴露劑量。2.有吸煙習慣者體內的下班後24小時之S-PMA之AUC濃度與職場中空氣中苯濃度暴露相關性甚低(P=0.42),因此在未來進行低苯暴露之生物偵測時應將員工的吸煙行為加以考慮,以免對低苯暴露者之生物指標產生誤判。3.在基因多型性的研究方面,本研究發現在CYP2E1、GSTM1、GSTT1及NQO1四種基因多型性中,只有GSTT1基因多型性會對下班前單一尿中的生物指標S-PMA造成顯著影響,不同基因多型性對體內連續苯暴露8小時S-PMA之AUC並未有任何顯著影響,可能歸因於連續完整尿液樣本取得不易,導致樣本數過少所致。4.在低苯暴露對體內造血功能的傷害方面,本研究並未發現任何血液常規檢查項目與體內的苯暴露劑量有顯著相關。可能原因為;本研究族群屬於低苯暴露,尚未能產生健康效應;或基因多型性不同所影響。5. NQO1雙套變異型在所有血液檢查項目中對紅血球數異常(不足)影響最為敏銳,因此未來探討造血系統病變的前驅因子時可考慮以紅血球數變化作為造成造血系統異常之早期生物效應指標。
Benzene is a common organic solvent used in industry. One of the current biomarkers of benzene exposure is urinary S-phenylmercapturic acid (U-SPMA) at post-shift. Cytochrome P450 2E1 (CYP2E1) and glutathione-S-transferase (GST) are involved in the biotransformation of S-PMA. Moreover, benzene intoxication was mainly due to its active intermediate metabolites. Among them, benzoquinone was documented to be responsible for its myelotoxicity and NAD(P)H:quinone oxidoreductase (NQO1) was the key enzyme during this metabolic pathway. Thus, the genetic polymorphism of aforementioned enzymes could affect the biotransformation of exposed benzene and the health effects. The purpose of this study is to investigate the effects of various genetic polymorphisms on S-PMA kinetics and the change of hematopoetic precursors. Seventy-four petrochemical workers directly exposed to benzene were environmentally monitored by breathing zone sampling coupled with gas chromatography analysis. Urine samples were collected at post-shift, during 8-hour complete work-shift and during 24-hr post-exposure since the end of the exposure. S-PMA in urine was analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Blood samples were collected from each participants and were used to determine their genetic polymorphisms of CYP2E1, GST, and NQO1 by PCR (Polymerase Chain Reaction) as well as hematopoetic precursors. We found: 1. Airborne benzene and urinary S-PMA measurements were shown as log-normally distributed and their geometric means were 6.52 ppb and 0.39 μg/g Cr., respectively, far below the current permissible exposure limit and biological exposure index; 2. Significant association between airborne benzene concentrations and U-SPMA at post-shift was found (r=0.39,P<0.01). 3. For those who were determined for their S-PMA throughout 8-hr complete work-shift and post-shift, significant association of airborne benzene concentrations with AUCS-PMA (area under curve) (r=0.62,P <0.05), but not with S-PMA at post-shift, was found; 4. AUCS-PMA at 24-hr post-shift were found significantly different between smokers and non-smokers (P<0.05); 5. The frequency distributions of CYP2E1, NQO1 and GSTT1/M1 in our study were not different from those for Taiwanese or Chinese in literature; 6. The natural-transformed ratios of S-PMA to airborne benzene in those subjects with non-null GSTT1 type were significantly higher than those with null type; 7. No any hemetopoeitic parameter disorders were associated with the S-PMA levels in urine; 8. The risk of RBC count abnormality for those who with T/T type of NQO1 was significantly higher than those with T/C and C/C (OR=24.4, 95%3.4-173.4, P<0.05). We concluded that 1. Because the AUC of S-PMA within 8-hr work-shift was better correlated with benzene exposure levels than S-PMA concentrations at post-shift, the biological monitoring of benzene exposure might consider using AUC to calibrate the total body burden while benzene exposure is low; 2. Cigarette smoking should be taken into consideration of biological monitoring of benzene exposure; 3. GSTT1 genetic polymorphism might affect the S-PMA levels and possibly due to insufficient sample size, this study was unable to determine the effect of the genetic polymorphism on S-PMA AUC; 4. Possibly owing to the benzene exposure was too low or other factors including genetic polymorphism, this study found no association between benzene exposure and hematopoetic precursor abnormality; 5. NQO1 genetic polymorphism was found only associated with RBC count abnormality, indicating the RBC count could be one of the most sensitive precursors for the determination of hematopoetic abnormality.
目錄
第一章. 序論 1
第二章. 研究目的 4
第三章. 文獻探討 5
3-1. 苯的物化特性及使用 5
3-2. 苯之代謝途徑 6
3-3. 苯之毒性及健康效應 7
3-4. 苯之生物偵測 7
3-5. 尿中苯生物暴露指標之動力學研究 8
3-6. 過去進行苯基因多型性的探討 9
3-7. 基因多型性對生物偵測和健康效應之影響 10
第四章. 材料與方法 14
4-1. 實驗材料與設備 15
4-1-1. 採樣材料 15
4-1-2. 分析儀器 15
4-1-3. 藥品與試劑 16
4-2. 採樣策略 18
4-2-1. 採樣對象 18
4-2-2. 採樣方法 18
4-3. 分析方法 19
4-3-1. 空氣濃度分析方法 19
4-3-2. 尿液S-PMA濃度分析方法 20
4-3-3. 基因多型性分析方法 23
4-3-4. 血液常規檢查 28
4-4. 資料處理與分析 29
第五章. 結果與討論 30
5-1. 研究對象 30
5-2. 生物暴露偵測 30
5-3. 基因多型性 32
5-4. 生物效應偵測 34
第六章. 結論與建議 37
第七章. 參考文獻 39
1.Alexandrie, A. K.; Rannug, A.; Juronen, E.; Tasa, G.; and Warholm, M.: Detection and characterization of a novel functional polymorphism in the GSTT1 gene. Pharmacogenetics., 12(8): 613-9, 2002.
2.Ambrosone, C. B.; Coles, B. F.; Freudenheim, J. L.; and Shields, P. G.: Glutathione-S-transferase (GSTM1) genetic polymorphisms do not affect human breast cancer risk, regardless of dietary antioxidants. Journal of Nutrition., 129(2S Suppl): 565S-568S, 1999.
3.Andrews, L. S.; Sasame, H. A.; and Gillette, J. R.: 3H-Benzene metabolism in rabbit bone marrow. Life Sciences., 25(7): 567-72, 1979.
4.Arand, M.; Muhlbauer, R.; Hengstler, J.; Jager, E.; Fuchs, J.; Winkler, L.; and Oesch, F.: A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S-transferase GSTM1 and GSTT1 polymorphisms. Analytical Biochemistry., 236(1): 184-6, 1996.
5.Baak, Y. M.; Ahn, B. Y.; Chang, H. S.; Kim, J. H.; Kim, K. A.; and Lim, Y.: Aplastic anemia in a petrochemical factory worker. Environmental Health Perspectives., 107(10): 851-3, 1999.
6.Boogaard, P. J., and van van Sittert, N. J.: Biological monitoring of exposure to benzene: a comparison between S-phenylmercapturic acid, trans,trans-muconic acid, and phenol. Occupational & Environmental Medicine., 52(9): 611-20, 1995.
7.Chaney, A. M., and Carlson, G. P.: Comparison of rat hepatic and pulmonary microsomal metabolism of benzene and the lack of benzene-induced pneumotoxicity and hepatotoxicity. Toxicology., 104(1-3): 53-62, 1995.
8.Eickelmann, P.; Ebert, T.; Warskulat, U.; Schulz, W. A.; and Sies, H.: Expression of NAD(P)H:quinone oxidoreductase and glutathione S-transferases alpha and pi in human renal cell carcinoma and in kidney cancer-derived cell lines. Carcinogenesis., 15(2): 219-25, 1994.
9.Erexson, G. L.; Wilmer, J. L.; and Kligerman, A. D.: Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Research., 45(6): 2471-7, 1985.
10.Gaedigk, A.; Tyndale, R. F.; Jurima-Romet, M.; Sellers, E. M.; Grant, D. M.; and Leeder, J. S.: NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics., 8(4): 305-13, 1998.
11.Gollmer, L.; Graf, H.; and Ullrich, V.: Characterization of the benzene monooxygenase system in rabbit bone marrow. Biochemical Pharmacology., 33(22): 3597-602, 1984.
12.Harada, S.: [Classification of alcohol metabolizing enzymes and polymorphisms--specificity in Japanese]. Nihon Arukoru Yakubutsu Igakkai Zasshi., 36(2): 85-106, 2001.
13.Hirvonen, A.; Husgafvel-Pursiainen, K.; Anttila, S.; Karjalainen, A.; and Vainio, H.: The human CYP2E1 gene and lung cancer: DraI and RsaI restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis., 14(1): 85-8, 1993.
14.Hsieh, C. C., and Tsai, J. H.: VOC concentration characteristics in Southern Taiwan. Chemosphere., 50(4): 545-56, 2003.
15.Inoue, O Seiji, K.; Watanabe, T.; Kasahara, M.; Nakatsuka, H.; Yin, S. N.; Li, G. L.; Cai, S. X.; Jin, C.; Ikeda, M.: Mutual metabolic suppression between benzene and toluene in man. International Archives of Occupational & Environmental Health., 60(1): 15-20, 1988.
16.Irons, R. D.: Benzene-induced myelotoxicity: application of flow cytofluorometry for the evaluation of early proliferative change in bone marrow. Environmental Health Perspectives., 39: 39-49, 1981.
17.Irons, R. D.; Dent, J. G.; Baker, T. S.; and Rickert, D. E.: Benzene is metabolized and covalently bound in bone marrow in situ. Chemico-Biological Interactions., 30(2): 241-5, 1980.
18.Junxiang, W.; Jinxiu, S.; Lijian, H.; Dan, W.; Xipeng, J.; Naiqing, Z.; Wei, H.; Zhaolin, X.; and Gengxi, H.: Association of Genetic Polymorphism in CYP2E1, MPO, NQO1, GSTM1, and GSTT1 Genes with Benzene Poisoning. Environmental Health Perspectives., 1101: 1213-1218, 2002.
19.Kato, S.; Shields, P. G.; Caporaso, N. E.; Hoover, R. N.; Trump, B. F.; Sugimura, H.; Weston, A.; and Harris, C. C.: Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Research., 52(23): 6712-5, 1992.
20.Kelsey, K. T.; Ross, D.; Traver, R. D.; Christiani, D. C.; Zuo, Z. F.; Spitz, M. R.; Wang, M.; Xu, X.; Lee, B. K.; Schwartz, B. S.; Wiencke, J. K.: Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. British Journal of Cancer., 76(7): 852-4, 1997.
21.Kolachana, P.; Subrahmanyam, V. V.; Meyer, K. B.; Zhang, L.; and Smith, M. T.: Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Research., 53(5): 1023-6, 1993.
22.Lastowska, M.; Cotterill, S.; Bown, N.; Cullinane, C.; Variend, S.; Lunec, J.; Strachan, T.; Pearson, A. D.; and Jackson, M. S.: Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes, Chromosomes & Cancer., 34(4): 428-36, 2002.
23.Le Marchand, L.; Seifried, A.; Lum, A.; and Wilkens, L. R.: Association of the myeloperoxidase -463G-->a polymorphism with lung cancer risk. Cancer Epidemiology, Biomarkers & Prevention., 9(2): 181-4, 2000.
24.Lee, C. R.; Yoo, C. I.; Lee, J. H.; Kim, S. R.; and Kim, Y.: Hematological changes of children exposed to volatile organic compounds containing low levels of benzene. Science of the Total Environment., 299(1-3): 237-45, 2002.
25.Lee, E. J.; Wong, J. Y.; Yeoh, P. N.; and Gong, N. H.: Glutathione S transferase-theta (GSTT1) genetic polymorphism among Chinese, Malays and Indians in Singapore. Pharmacogenetics., 5(5): 332-4, 1995.
26.Liao, P. C.; Li, C. M.; Lin, L. C.; Hung, C. W.; and Shih, T. S.: An online automatic sample cleanup system for the quantitative detection of the benzene exposure biomarker S-phenylmercapturic acid in human urine by electrospray ionization tandem mass spectrometry. Journal of Analytical Toxicology, 26(4): 205-10, 2002.
27.Linet, M. S.; Yin, S. N.; Travis, L. B.; Li, C. Y.; Zhang, Z. N.; Li, D. G.; Rothman, N.; Li, G. L.; Chow, W. H.; Donaldson, J.; Dosemeci, M.; Wacholder, S.; Blot, W. J.; Hayes, R. B.: Clinical features of hematopoietic malignancies and related disorders among benzene-exposed workers in China. Benzene Study Group. Environmental Health Perspectives., 104(Suppl 6): 1353-64, 1996.
28.Lucas, D.; Ferrara, R.; Gonzales, E.; Albores, A.; Manno, M.; and Berthou, F.: Cytochrome CYP2E1 phenotyping and genotyping in the evaluation of health risks from exposure to polluted environments. Toxicology Letters., 124(1-3): 71-81, 2001.
29.Marchand, A.; Mathe, C.; Imbach, J. L.; and Gosselin, G.: Synthesis and antiviral evaluation of unnatural beta-L-enantiomers of 3'-fluoro- and 3'-azido-2',3'-dideoxyguanosine derivatives. Nucleosides, Nucleotides & Nucleic Acids., 19(1-2): 205-17, 2000.
30.Melikian, A. A.; Qu, Q.; Shore, R.; Li, G.; Li, H.; Jin, X.; Cohen, B.; Chen, L.; Li, Y.; Yin, S.; Mu, R.; Zhang, X.; Wang, Y.: Personal exposure to different levels of benzene and its relationships to the urinary metabolites S-phenylmercapturic acid and trans,trans-muconic acid. Journal of Chromatography B: Analytical Technologies in the Biomedical & Life Sciences., 778(1-2): 211-21, 2002.
31.Moran, J. L.; Siegel, D.; and Ross, D.: A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity.[comment]. Proceedings of the National Academy of Sciences of the United States of America., 96(14): 8150-5, 1999.
32.Nebert, D. W.; Roe, A. L.; Dieter, M. Z.; Solis, W. A.; Yang, Y.; and Dalton, T. P.: Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochemical Pharmacology., 59(1): 65-85, 2000.
33.Nebert, D. W.; Roe, A. L.; Vandale, S. E.; Bingham, E.; and Oakley, G. G.: NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genetics in Medicine., 4(2): 62-70, 2002.
34.Nomura, F.; Itoga, S.; Uchimoto, T.; Tomonaga, T.; Nezu, M.; Shimada, H.; and Ochiai, T.: Transcriptional activity of the tandem repeat polymorphism in the 5'-flanking region of the human CYP2E1 gene. Alcoholism: Clinical & Experimental Research., 27(8 Suppl): 42S-46S, 2003.
35.Omiecinski, C. J.; Hassett, C.; and Hosagrahara, V.: Epoxide hydrolase--polymorphism and role in toxicology. Toxicology Letters., 112-113: 365-70, 2000.
36.Ong, C. N.; Kok, P. W.; Ong, H. Y.; Shi, C. Y.; Lee, B. L.; Phoon, W. H.; and Tan, K. T.: Biomarkers of exposure to low concentrations of benzene: a field assessment.[comment]. Occupational & Environmental Medicine., 53(5): 328-33, 1996.
37.Ong, C. N.; Lee, B. L.; Shi, C. Y.; Ong, H. Y.; and Lee, H. P.: Elevated levels of benzene-related compounds in the urine of cigarette smokers. International Journal of Cancer., 59(2): 177-80, 1994.
38.Parke, D. V.: Personal reflections on 50 years of study of benzene toxicology. Environmental Health Perspectives., 104(Suppl 6): 1123-8, 1996.
39.Pero, R. W.; Sheng, Y.; Olsson, A.; Bryngelsson, C.; and Lund-Pero, M.: Hypochlorous acid/N-chloramines are naturally produced DNA repair inhibitors. Carcinogenesis., 17(1): 13-8, 1996.
40.Pezzagno, G.; Maestri, L.; and Fiorentino, M. L.: Trans,trans-muconic acid, a biological indicator to low levels of environmental benzene: some aspects of its specificity. American Journal of Industrial Medicine., 35(5): 511-8, 1999.
41.Qu, Q.; Cohen, B. S.; Shore, R.; Chen, L. C.; Li, G.; Jin, X.; Melikian, A. A.; Yin, S.; Yan, H.; Xu, B.; Li, Y.; Mu, R.; Zhang, X.; Li, K.: Benzene exposure measurement in shoe and glue manufacturing: a study to validate biomarkers. Applied Occupational & Environmental Hygiene., 18(12): 988-98, 2003.
42.Qu, Q.; Melikian, A. A.; Li, G.; Shore, R.; Chen, L.; Cohen, B.; Yin, S.; Kagan, M. R.; Li, H.; Meng, M.; Jin, X.; Winnik, W.; Li, Y.; Mu, R.; Li, K.: Validation of biomarkers in humans exposed to benzene: urine metabolites. American Journal of Industrial Medicine., 37(5): 522-31, 2000.
43.Qu, Q.; Shore, R.; Li, G.; Jin, X.; Chen, L. C.; Cohen, B.; Melikian, A. A.; Eastmond, D.; Rappaport, S. M.; Yin, S.; Li, H.; Waidyanatha, S.; Li, Y.; Mu, R.; Zhang, X.; Li, K.: Hematological changes among Chinese workers with a broad range of benzene exposures. American Journal of Industrial Medicine., 42(4): 275-85, 2002.
44.Reynolds, W. F.; Chang, E.; Douer, D.; Ball, E. D.; and Kanda, V.: An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood., 90(7): 2730-7, 1997.
45.Rinsky, R. A.; Smith, A. B.; Hornung, R.; Filloon, T. G.; Young, R. J.; Okun, A. H.; and Landrigan, P. J.: Benzene and leukemia. An epidemiologic risk assessment. New England Journal of Medicine., 316(17): 1044-50, 1987.
46.Ross, D.: The role of metabolism and specific metabolites in benzene-induced toxicity: evidence and issues. Journal of Toxicology & Environmental Health Part A., 61(5-6): 357-72, 2000.
47.Rossi, A. M.; Guarnieri, C.; Rovesti, S.; Gobba, F.; Ghittori, S.; Vivoli, G.; and Barale, R.: Genetic polymorphisms influence variability in benzene metabolism in humans. Pharmacogenetics., 9(4): 445-51, 1999.
48.Rothman, N.; Smith, M. T.; Hayes, R. B.; Traver, R. D.; Hoener, B.; Campleman, S.; Li, G. L.; Dosemeci, M.; Linet, M.; Zhang, L.; Xi, L.; Wacholder, S.; Lu, W.; Meyer, K. B.; Titenko-Holland, N.; Stewart, J. T.; Yin, S.; Ross, D.: Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C-->T mutation and rapid fractional excretion of chlorzoxazone. Cancer Research., 57(14): 2839-42, 1997.
49.Sammett, D.; Lee, E. W.; Kocsis, J. J.; and Snyder, R.: Partial hepatectomy reduces both metabolism and toxicity of benzene. Journal of Toxicology & Environmental Health., 5(5): 785-92, 1979.
50.Sanford, J. P.; Sait, S. N.; Pan, L.; Nowak, N. J.; Gill, H. J.; Le Beau, M. M.; Diaz, M. O.; Zabel, B.; and Shows, T. B.: Characterization of two 11q23.3-11q24 deletions and mapping of associated anonymous DNA markers. Genes, Chromosomes & Cancer., 7(2): 67-73, 1993.
51.Schnier, G. G.; Laethem, C. L.; and Koop, D. R.: Identification and induction of cytochromes P450, P450IIE1 and P450IA1 in rabbit bone marrow. Journal of Pharmacology & Experimental Therapeutics., 251(2): 790-6, 1989.
52.Shen, J.; Wang, R.; Wang, Z.; Xing, H.; Wang, L.; Wang, B.; Li, M.; Hua, Z.; Wang, J.; Guo, C.; Wang, X.; Xu, X.: [The distributive features of three kinds of metabolic genes polymorphisms in population of Han nationality in south area of China]. Chung-Hua i Hsueh i Chuan Hsueh Tsa Chih., 19(4): 302-7, 2002.
53.Sherwood, R. J.: Pharmacokinetics of benzene in a human after exposure at about the permissible limit. Annals of the New York Academy of Sciences., 534: 635-47, 1988.
54.Snyder, R., and Hedli, C. C.: An overview of benzene metabolism. Environmental Health Perspectives., 104(Suppl 6): 1165-71, 1996.
55.Snyder, R.; Witz, G.; and Goldstein, B. D.: The toxicology of benzene. Environmental Health Perspectives., 100: 293-306, 1993.
56.Stephens, E. A.; Taylor, J. A.; Kaplan, N.; Yang, C. H.; Hsieh, L. L.; Lucier, G. W.; and Bell, D. A.: Ethnic variation in the CYP2E1 gene: polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. Pharmacogenetics., 4(4): 185-92, 1994.
57.Traver, R. D.; Horikoshi, T.; Danenberg, K. D.; Stadlbauer, T. H.; Danenberg, P. V.; Ross, D.; and Gibson, N. W.: NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Research., 52(4): 797-802, 1992.
58.Trush, A.; Esterline, R. L.; Mallet, W. G.; Mosebrook, D. R.; and Twerdok, L. E.: Further evidence for the role of myeloperoxidase in the activation of benzo[a]pyrene-7,8-dihydrodiol by polymorphonuclear leukocytes. Advances in Experimental Medicine & Biology., 283: 399-401, 1991.
59.Ungvary, G., and Tatrai, E.: On the embryotoxic effects of benzene and its alkyl derivatives in mice, rats and rabbits. Archives of Toxicology. Supplement., 8: 425-30, 1985.
60.van Rensburg, C. E.; Van Staden, A. M.; Anderson, R.; and Van Rensburg, E. J.: Hypochlorous acid potentiates hydrogen peroxide-mediated DNA-strand breaks in human mononuclear leucocytes. Mutation Research., 265(2): 255-61, 1992.
61.van van Sittert, N. J.; Beulink, G. D.; van Vliet, E. W.; and van der Waal, H.: Monitoring occupational exposure to ethylene oxide by the determination of hemoglobin adducts. Environmental Health Perspectives., 99: 217-20, 1993.
62.van van Sittert, N. J.; Boogaard, P. J.; and Beulink, G. D.: Application of the urinary S-phenylmercapturic acid test as a biomarker for low levels of exposure to benzene in industry. British Journal of Industrial Medicine., 50(5): 460-9, 1993.
63.van Tiel, E.; Peeters, P. H.; Smit, H. A.; Nagelkerke, N. J.; Van Loon, A. J.; Grobbee, D. E.; and Bueno-de-Mesquita, H. B.: Quitting smoking may restore hematological characteristics within five years. Annals of Epidemiology., 12(6): 378-88, 2002.
64.Verdina, A.; Galati, R.; Falasca, G.; Ghittori, S.; Imbriani, M.; Tomei, F.; Marcellini, L.; Zijno, A.; and Vecchio, V. D.: Metabolic polymorphisms and urinary biomarkers in subjects with low benzene exposure. Journal of Toxicology & Environmental Health Part A., 64(8): 607-18, 2001.
65.Yin, S. N.; Hayes, R. B.; Linet, M. S.; Li, G. L.; Dosemeci, M.; Travis, L. B.; Zhang, Z. N.; Li, D. G.; Chow, W. H.; Wacholder, S.; Blot, W. J.: An expanded cohort study of cancer among benzene-exposed workers in China. Benzene Study Group. Environmental Health Perspectives., 104(Suppl 6): 1339-41, 1996.
66.Yin, S. N.; Li, G. L.; Tain, F. D.; Fu, Z. I.; Jin, C.; Chen, Y. J.; Luo, S. J.; Ye, P. Z.; Zhang, J. Z.; Wang, G. C.: A retrospective cohort study of leukemia and other cancers in benzene workers. Environmental Health Perspectives., 82: 207-13, 1989.
67.World Health Organization (WHO)Intermational Programme on Chemical Safety, Environmental Health Criteria. World Health Organization 150. (1993), Genva.
68.American Conference of Governmental Industrial Hygienists(ACGIH)Threshold limit values for chemical substances and physical agents and biological exposure indices, Cincinnati, Ohio, USA; 2001
69.International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Chemicals, Industrial processes and industries associated with cancer in humans. Supplement7, Lyon, France, 1987.
70.行政院環保署,2001,「車用汽柴油成分及性能管制標準」,台北,中華民國。
71.林昇峰,1992,「血液學概論」,合記圖書出版社,台北,中華民國。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top